
Design, Implementation, and Evaluation of a Client
Characterization Driven Web Server

Balachander Krishnamurthy
AT&T Labs–Research

Florham Park, NJ, USA

bala@research.att.com

Craig E. Wills
Worcester Polytechnic Institute

Worcester, MA USA

cew@cs.wpi.edu

Yin Zhang
AT&T Labs–Research

Florham Park, NJ, USA

yzhang@research.att.com

Kashi Vishwanath
Duke University

Durham, NC USA

kvv@cs.duke.edu

ABSTRACT
In earlier work we proposed a way for a Web server to detect con-
nectivity information about clients accessing it in order to take tai-
lored actions for a client request. This paper describes the design,
implementation, and evaluation of such a working system. A Web
site has a strong incentive to reduce the ‘time-to-glass’ to retain
users who may otherwise lose interest and leave the site. We have
performed a measurement study from multiple client sites around
the world with various levels of connectivity to the Internet com-
municating with modified Apache Web servers under our control.
The results show that clients can be classified in a correct and stable
manner and that user-perceived latency can be reduced via tailored
actions. Our measurements show that classification and determina-
tion of server actions are done without significant overhead on the
Web server. We explore a variety of modified actions ranging from
selecting a lower quality version of the resource to altering the man-
ner of content delivery. By studying numerous performance related
factors in a single unified framework and examining both individual
actions as well as combination of actions, our modified Web server
implementation shows the efficacy of various server actions.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems;
C.5 [Computer Systems Organization]: Computer System Im-
plementation—Servers; D.0 [Software]: General

General Terms
Design, experimentation, measurement, performance.

Keywords
Web performance, Apache server, httperf, content delivery, client
classification, server adaptation.

1. INTRODUCTION
User-perceived latency has a strong bearing on how long users

stay at a Web site and the frequency with which they return to the
site. A Web site that is trying to retain users has a strong incentive
to reduce the “time to glass” (the delay between a user’s request and

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

the subsequent delivery and display) for a Web page. For Web sites
that have a critical need to retain users beyond the first page there
is a strong motivation to deliver the content quickly to the user.
Other work has proposed enhanced admission control and schedul-
ing policies at Web servers to give priority to some requests [5, 6].
However, the performance perceived by a Web client to a server
may be due to low bandwidth, high latency, network congestion
or the delay at intermediaries between the client and server, which
are not under the control of the server. In spite of these potential
impediments, the server has a strong incentive to deliver the most
suitable content as quickly as possible to the user.

This work takes a new approach for how a server should iden-
tify and react to clients receiving poor performance. It builds on
earlier work where we presented a way to characterize Web client’s
connectivity information and proposed mitigating actions a server
could take such as selecting a lower quality version of a resource
for delivery or by altering the manner of content delivery [11]. In
this follow up work we present the design and implementation of
a working prototype, using Apache [2], that demonstrates the fea-
sibility of a Web server classifying clients and potentially taking
alternate actions in serving content to clients.

This work also builds on earlier research work that has examined
Web performance from the viewpoint of individual improvements
in reducing user-perceived latency or load on the network. The
set of ideas includes compression and delta encoding [14], stability
in network performance [4], examining impact of various protocol
variations of HTTP [16, 10] and bundling resources [22]. What
these works have in common is the use of a single idea to explore
impact on Web performance. Each of these pieces of research differ
in their evaluation environment in the sense that they use different
methodologies, workloads, and validation techniques.

This work is distinguished because we use our prototype to not
only evaluate online characterization of live requests, but also to
evaluate the potential performance improvements for various ac-
tions in a unified framework. We also examine meaningful combi-
nations of actions. We use a canonical set of container documents
with various distributions of embedded objects in terms of number
and size. This approach allows the results of our work to be ap-
plied by a wide variety of sites to test the potential performance
improvement for clients that visit them.

We explore the impact of various potential performance im-
provements by an active measurement testbed consisting of clients
with different connectivity sending requests to a small number of



prototype Web servers under our control. Having control over the
Web server and content allows us to examine the different perfor-
mance components in an automated fashion. By downloading the
canonical container document set from clients with different con-
nectivity capabilities, we can measure the actual improvement as a
result of various server actions. We measure the latency reduction
to the clients as a result of the server’s different actions tailored to
the class of the client as well as the overhead imposed on the server
for carrying out the classification and altered action execution.

We examine three classes of server actions in this work for im-
proving the response time for clients:

1. Altering the Content. Given a range of content variants, a
server could choose a reduced version for poorer clients, by
including fewer, if any, embedded objects or by including
“thinner” variants of embedded images.

2. Altering Manner of Delivery of Content. The content can
be compressed with a suitable compression algorithm. The
server can also bundle the embedded objects into a single
resource, which can be retrieved by clients to avoid multiple
rounds of requests to fetch the objects. This technique can be
combined with compression to reduce the size of the bundle.

3. Altering Server Policies. A server could choose to maintain
longer persistent connections for poor clients.

The rest of this paper is organized as follows: Section 2 describes
the system architecture and implementation of our prototype sys-
tem for live characterization and alternate server action. The sec-
tion describes the implementation of the classifier and the instru-
mentation done to the Apache server. Section 3 describes testing
we did to measure the overhead of our changes to the server and
the results we obtained. Section 4 describes the methodology that
we used to evaluate our implementation and the live experiments
that were carried out. Section 5 presents the result of our study.
Section 6 discusses related work. We conclude with Section 7 by
presenting a summary of our results and ongoing work.

2. SYSTEM ARCHITECTURE AND IM-
PLEMENTATION

The goal of this work is to build a working prototype system that
can both do live characterization of client connectivity based on
their requests as well as take an appropriate action for clients clas-
sified as poor. Our prototype has two pieces: a classifier that uses
client requests to classify clients into different connectivity classes;
and an active Web server component that takes an available action
for a request from a poor or rich client. This section describes the
overall design we used for the prototype system as well as the im-
plementation details of the classifier and instrumented Apache [2]
Web server. The architecture of our prototype is shown in Figure 1.

We use a separate daemon process for the classifier. We orig-
inally considered including the classifier as a routine within the
Apache Web server, but rejected this approach to minimize our
modifications to the Apache server and to design a solution that
works with the multiple pre-forked process architecture of Apache.

As shown in Figure 1, input to the classifier process is a standard
Apache log file, which is written to by each Apache server process
and read by the classifier. Reading from the log file introduces
some potential delay for the classifier to start classifying a client,
but requires no modification of the server.

The output of the classifier process is a mapping between client
IP address and the classification (poor, normal or rich) for that

Classifier

Server Log

Classification Table in

Shared Memory
Apache

Processes

Requests

Figure 1: System Architecture

client. This classification is stored by the classifier in shared mem-
ory. This shared memory is available for reading by each of the
Apache server processes. The classifier also determines the classi-
fication for network-aware clusters [9] of IP addresses, used to pro-
vide a coarser level of client categorization. Such a cluster catego-
rization can then be used to categorize subsequent clients from that
cluster for which a client-specific categorization is not available.
Clustering is implemented using a fast longest prefix matching li-
brary. The cluster classifications are also stored in shared memory
for use when per-client classification is not available.

Our architecture, with a separate classifier process, yields a clean
implementation requiring only minor modifications to the Apache
code. It also allows for the priority of the classifier to be reduced
during heavy system load so that more CPU time can be devoted to
the Web server processes, while still being able to access existing
classification information in shared memory.

Another issue related to the system architecture is to define the
set of pages that are used to classify a client, and the set of pages
on which actions can be taken to alter content, manner of delivery
or server policies. These sets may overlap. In the simplest case, all
pages at a site constitute each set. However, it makes little sense
to expend resources on infrequently accessed pages. Thus both
sets of pages should be restricted to the more frequently requested
pages at a site. Beyond popularity, pages in the first set should
distinguish connectivity differences between clients. For example,
pages with little content and few or no embedded objects may not
be appropriate for use in classification. Pages in the second set
should include those for which at least one action can significantly
improve the response time for the page. Details of how these sets
are specified and the available actions are given in Section 4.

2.1 Classifier Implementation
The classifier is written in C and works in a similar manner to

the client characterization algorithm described in [11]. Prior to the
classifier process running, an offline process is run to determine the
most popular container URIs that account for the 70% of accesses
to the server site. Standard server logs are used to gather this in-
formation. Only requests with 200 and 304 HTTP response codes



are considered. Container URIs with HTML content are identified
using the URI string, although other site-specific knowledge could
be incorporated. The set of popular container URIs constitute the
set used for classification. This set can be updated as the dynamics
of site access dictate.

When the classifier process starts up, it begins to read the log
file for URI requests. It continues to read GET requests while they
are available. If the classifier reaches the end of the log file while
reading then it times out for a short period (currently a configurable
parameter of 5 seconds) before it checks the log file again for fresh
requests.

When a container URI is identified, the classifier checks if this
URI is in the set for classification. If not then it is skipped for clas-
sification. If the URI is in the classification set then the classifier
records the retrieval time for this base object for the given client. As
subsequent requests from the same client are read for embedded ob-
jects (images, style sheets, javascript) of the base object, additional
metrics are computed for client classification.

We used two metrics in classifying a client: the delay (in sec-
onds) between the base object and the first embedded object and
the delay between the base object and the last embedded object in
a sequence. For each of these two metrics, we defined cumulative
values Efirst and Elast to represent long-term estimates for these
two metrics for each client. To both minimize the amount of infor-
mation stored for each client and to give greater weight to more re-
cent history, we chose to use a exponentially weighted mean where
the value for Efirst (Elast is similarly defined) is given as:

Efirst = αEfirst + (1 − α)Emeasured

where Emeasured is the current measurement for the delay between
the base and first embedded object. In the prototype we used a
configurable parameter of α = 0.7.

After each page retrieval, a client was classified based on the
values of Efirst and Elast. In [11] we explored a variety of classi-
fication thresholds. In practice, these thresholds would be set based
on content and client mix for a site. In the prototype we made the
thresholds as configurable parameters, but for all tests we classified
a client as poor

if Efirst > 3 or Elast > 5 seconds
and a client as rich

if Efirst <= 1 and Elast <= 2 seconds.
All clients not matching either criteria are classified as normal.

The classifier begins classifying a client as soon as it sees the first
request sequence from the client. As an aid to the Apache server
in potentially taking actions for requests from previously unseen
clients, the classifier process also classifies clusters of client IP ad-
dresses. The classifier does not classify pages on which an action
has been taken.

2.2 Instrumented Apache Server
We used version 1.3.24 of the publicly available Apache Web

server for our prototype. The changes to the Web server were con-
centrated in three files: http_main.c, http_protocol.c
and http_core.c.

Changes made to Apache are in two categories. The first cat-
egory are changes made at server start time—these steps need to
be taken each time the server is restarted. The following steps are
done in the function REALMAIN() in http_main.c.

1. Open the cluster library. Subsequent lookups of IP addresses
for cluster membership are made via a simple library call.

2. Read in a config file with various server actions for tailorable
content The entries look like:

/foo.html .gz .p_lc ; .r_mc

The above entry states that a gzip compressed form of the
resource foo.html as well as a version with less content is
available for poor clients (p lc). There is also an alternate
version with more content (r mc) available for rich clients.
The total number of URIs for which alternate version exists
is a strict subset of the popular URIs. No alternate content is
served for unpopular URIs.

3. Initialize shared memory for reading in the classes corre-
sponding to the IP addresses and the clusters. Shared mem-
ory is implemented using two libraries: vmalloc [19] and
cdt [20]. vmalloc is a general purpose C library for allocat-
ing memory in regions with efficient algorithms for compact
memory lay-out enabling applications to select such algo-
rithms per region to tune memory usage. CDT provides a
comprehensive set of container data types implemented on
top of efficient data structures such as splay trees and adap-
tive hash tables. Experimental results [19] have shown that
CDT containers outperform their counterparts in other simi-
lar packages including C++ STL containers. These libraries
use the discipline and method library design enabling ap-
plications to compose them to provide high-performance in-
memory containers as well as persistent ones.

The second category of modifications are for additional work
that is needed for each request served by the server. The first mod-
ification is done in the function read request line() in
http_protocol.c. The remaining four steps are in the
core translate() function of http_core.c.

1. Check if the requested URI is for a container document; this
is done at time of reading the request line via the function
is container(). If so, then we record this in the data structure
associated with this request (request rec). If not, we ignore
it since there is no altered content to be served.

2. If it is a container document, we locate the class for the client
in the shared memory. If the class is available, we record it in
the data structure associated with the request. Else, we iden-
tify the cluster of the client’s IP address and if the cluster’s
class is available we record that in the request’s data struc-
ture.

3. If the class is available (either via the IP or its cluster) and is
not normal, then the server checks the possibility of modified
content via the function modify uri().

4. The modify uri() function looks up the various alternate ver-
sions available for a URI in the table initialized at server start
time. A client expresses its willingness to accept particu-
lar actions through a X-Server-Actions HTTP header.
Thus if the client includes the X-Server-Actions:.gz
header, then the server checks if the .gz alternative is avail-
able to serve this URI. If found, the URI /foo.html is replaced
in the data structure with the alternate URI (/foo.html.gz).
The server serves the client this file and records the request
in the log file as /foo.html.gz. This approach lets the classi-
fier know that a tailored action was taken.

3. SERVER OVERHEAD
Our first step in evaluating the prototype system is to examine

the amount of overhead introduced at the server for handling a



request. The mechanism should not introduce perceivable over-
head for client requests, whether or not a server action is taken, nor
should it reduce the request handling capacity of the server. For this
evaluation we did not use the live clients described in Section 4, but
used a controlled experiment as described below.

There were two categories of changes to the Apache server
code: a set of changes that add to overhead at server start time
and changes that result in overhead for each request handled. The
overhead in the first category includes opening the cluster library,
reading in the configuration file for the different URIs for which
modified action are enabled, and initialization of the shared mem-
ory. The second category of overheads are on a per-request basis:
these include a function to verify that the requested URI is a con-
tainer document, looking up the class of the client in shared mem-
ory, looking up the cluster information in the shared memory after
calculating the prefix, and altering the server action. Note that this
is a per-request overhead and not per-connection. Finally, to mea-
sure the server overhead, we introduced the ability to handle a new
header called X-IP to allow variations in IP addresses of clients in
order to test the usefulness of clustering (this header was not used
for subsequent live client tests).

We generated a test load with pages in different characteristics
buckets drawn from the distribution in Table 2. Client IP addresses
were chosen uniformly between 0.0.0.0 and 255.255.255.255 and
specified via the X-IP header. The entire test resulted in over
140K GET requests. We ignored all but the first 50000 requests
to ensure that the server has been warmed up. This is because we
do not want to underestimate shared memory lookup costs when
it is sparsely populated. Among these 50000 requests, many are
not container objects and thus do not require classification. Using
standard function call bracketing mechanisms we computed these
overheads and subtracted the 5 usec overhead of the timing function
calls themselves. The overhead is presented in Table 1. The aver-
age overhead is only 75 usec, which is well below user perception
threshold. Note that there is considerable room for optimizing our
code, especially in the functions is container() and modify uri(),
which currently are responsible for around two thirds of the over-
head. The standard deviation is only 18 usec, which is very small
compared to the average overhead. Most of the variation is due to
the function is container(), which compares the URI sequentially
with a list of suffixes (to determine if it is a container) and can thus
return at different points of execution.

Table 1: Overhead on the Server

Overhead (usec)
Step Mean Med. Stddev
Is URI a container document? 19.2 2 12.1
Class lookup in shared memory 12.5 9 5.8
Cluster related overhead

Converting IP address 4.2 3 6.1
Looking up cluster 8.0 7 4.8

Cluster lookup in shared memory 2.5 2 4.9
Classification based on cluster 0.7 0 4.4
Server actions

Modifying URI 25.5 25 6.1
Logging changed request 2.8 3 3.6

Total overhead 75.4 51 18.2

In addition to measuring the normal overhead, we also ran a
stress test to ensure that the extra classification work and addition
of shared memory etc., did not significantly reduce the ability of the

server to handle a sudden increase in overload. The servers were
installed on a 731 Mhz Pentium III (686-class CPU) PC running
FreeBSD 4.4-STABLE with 2 GB memory with no other users and
a uncongested link to the client machine.

We used ab (Apache Benchmark) [3], a benchmark program
from the Apache distribution, to measure how many requests per
second the server is capable of serving. In httpd.conf (con-
figuration file of Apache), we set 3 parameters: MaxKeepAliv-
eRequests to 0, i.e. infinity, KeepAliveTimeout to 300, i.e. 5 min-
utes, and MaxClients to 2048. We made 5 runs where each run
consisted of sending 10,000 requests for a 716 byte file and log-
ging the request handling time for the requests. Figure 2 shows the
average overhead increase of the modified server over the regular
Apache server across five separate runs (there was little difference
between each run). The overhead shown is the relative increase in
time to process the 10,000 requests in the modified versus regular
Apache server. We increased the level of concurrency from 1 to
1000. As Figure 2 shows, the average increase in processing time
for the modified server is around 11%, but showing steady signs
of diminishing as the number of concurrent connections increases
over 600. This result can be explained by the increased overhead of
the regular Apache server when it uses a large number of Apache
processes to handle the concurrent connections versus the relatively
fixed cost per request due to server actions.

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 S
er

ve
r 

O
ve

rh
ea

d 
(%

)

Number of Concurrent Connections

Figure 2: Stress Test Overhead

4. METHODOLOGY
After finding that the prototype system introduces little overhead

for request handling, we went on to use the prototype to evaluate
the two primary aspects of our approach.

The first aspect is the accuracy of the client classification mecha-
nism in correctly identifying the classification state for a variety of
clients. Unlike [11], the prototype allows us to evaluate a running
system receiving live requests. Related to correctness of classifi-
cation is the stability of the classification. We expect that the clas-
sification for a client should be relatively stable and not fluctuate
wildly across the set of classification states during an interval of
time.

The second aspect is the effectiveness of various server actions
for reducing the response time. We would like to investigate the
effect of different server actions for a variety of content and types
of clients. This work extends that in [12] to combine client classi-
fication with server actions.



To evaluate these two aspects we created a testing environment
for live testing of a variety of clients retrieving content from pro-
totype servers deployed at different sites. Each prototype server
contains the same content. The remainder of this section describes
the content, clients and servers as well as the methodology used for
testing.

4.1 Site Content
In order to run controlled experiments we want to create a site

with content of known characteristics that can be used to investi-
gate the correctness of client classification and the effectiveness of
various server actions for reducing download time for clients clas-
sified as poor.

We focus on characterizing pages based on the amount of con-
tent of a page. We examine the number of bytes in the container
object, the number of embedded objects and the total number of
bytes for the embedded objects. We used recent proxy logs from a
large manufacturing company with over 100,000 users, examined
requests to the container object of a page by looking for HTML
URLs, and selected the 1000 most popular pages. In April 2002 we
downloaded each container object and embedded objects (frames,
layers, cascading style sheets, javascript code and images) to de-
termine the size of these objects. Objects referenced as a result
of executing embedded javascript code were not considered. 641
URLs containing one or more embedded objects were successfully
retrieved and using 33% and 67% percentile values we created a
small, medium and large value range for each characteristic. The
rationale for this approach is to examine the impact of server ac-
tions across the “space” of different content sizes.

Using these three ranges for each of the three characteristics de-
fines a total of 27 “buckets” for the classification of an individual
page. The cut off for container bytes in small, medium and large
were less than 12K, less than 30K bytes, and more than 30K bytes
respectively. Similarly, for embedded objects it was less than 7,
22, and more than 22 and for embedded bytes 20K, 55K, and more
than 55K bytes.

Using these ranges we determined the percentage of pages that
fell in each bucket. These are shown in Table 2. The table shows
that 20% of these pages have a small number of container bytes,
a small number of embedded objects and a small number of em-
bedded bytes. 7% of the pages fall in the medium range for each
characteristic and 14% fall in the large range for each characteristic.

Table 2: Percentage of Pages in Each Characteristic Bucket
Based on Popular Pages from Proxy Log

Embedded Bytes
Small Medium Large

Embedded Cont. Bytes Cont. Bytes Cont. Bytes
Objects S M L S M L S M L
Small 20 6 2 4 1 0 0 0 0
Medium 2 3 1 5 7 8 2 5 3
Large 0 0 0 1 2 4 1 8 14

We defined the ranges primarily to identify pages that spanned
the space of all possible characteristics. We selected two represen-
tative pages from each bucket of the proxy log pages. In buckets
containing many pages we tried to select two pages that were rep-
resentative of characteristics within the bucket. In all, we selected
44 pages (not all buckets contained two pages) to cover the space of
characteristics and downloaded them to a test site using wget [21].

Additional objects were created in preparation for testing the var-
ious server actions: compressed version of each container object
using gzip, single bundled object with the embedded objects for

each page, and a separate compressed bundle object.

4.2 Clients and Servers
We installed the prototype Apache server along with the test site

content on relatively unloaded machines at three sites: a machine
running Linux at att.com in New Jersey, U.S., a machine running
Linux at wpi.edu in Massachusetts, U.S and a machine running
FreeBSD at icir.org in California, U.S.

Just as we deliberately chose Web content for our test Web site to
include a variety of characteristics, we located clients with different
connectivity characteristics to the test sites. We tested from clients
in five locations:

1. att: AT&T Labs–Research, New Jersey, USA,

2. de: Saarbruecken University in Germany,

3. cable: cable modem user in New Jersey,

4. modem: 56Kbps dialup modem user in New Jersey, and

5. uk: London, U.K. via a dedicated 56Kbps line.

Tests between clients and servers were run at different times of
the day. We used measured round-trip time (RTT) and throughput
to characterize the network connectivity characteristics between
these clients and our test sites. The round trip time was deter-
mined using the average TCP connection setup time for the first
object retrieval of each test. We computed the average throughput
for retrieving each of the bundle objects in the test site. We used
these objects because they contained a larger number of bytes. The
round-trip times and throughput for each of our client/server pairs
are shown in Figure 3. The standard deviation for the results shown
is at most 20-30% of the mean, save for the RTT of the modem and
uk clients. The RTT standard deviation for these clients is generally
60-110% of the average RTT to a server.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

R
o
u
n
d
-T

ri
p
 T

im
e
 (

m
s
)

Throughput (KB/sec)

att-att  

att-icir  

att-wpi(367)  cable-att  

cable-icir  

cable-wpi  

de-att  de-icir  
de-wpi  

modem-att  

modem-icir  

modem-wpi  

uk-att  

uk-icir  

uk-wpi  

Figure 3: Client/Server Connectivity



4.3 Experiment
For client testing, we used httperf [15], to make automated re-

trievals to the prototype servers for testing of the various server
actions. While retrieval using a real browser might be more real-
istic in measuring “time-to-glass,” the use of httperf allows us to
automate and control the retrieval under various conditions.

For testing, we wanted to generate requests with a similar mix
of content as present for frequently accessed content in the original
proxy logs of the large manufacturing company. We therefore used
the relative distribution of pages in the buckets shown in Table 2 to
guide which pages were requested from the prototype servers. We
randomly generated a stream of 200 page requests with the given
weightings for each type of page. This stream of requests was used
by all client tests to each server.

Each client test was designed to both examine the classifica-
tion state assigned by the prototype to a client and to measure
the relative effectiveness of different server actions. Each page
in the request stream was first sent to the server with an empty
X-Server-Actions header indicating that the server should
not take action on this page, but it should use this page for classi-
fication. As part of the response in serving the container object for
the page, the server returns a header X-Class indicating whether
the client is classified as poor, normal or rich. We use these results
to determine the correctness and stability of the classification for
the different client-server pairs.

The initial retrieval is done with httperf using up to four parallel
HTTP/1.0 requests. We use this “para-1.0” measure as a baseline
measure. We also study the relative effect of various server actions
by making subsequent client requests and forcing particular actions
to be taken based on the X-Server-Actions header.

We investigated two classes of server actions in our experiments.
We examined four actions that change the manner in which content
is delivered, but not the content itself:

1. compress—retrieve container object in compressed form and
embedded objects (uncompressed) using up to four parallel
HTTP/1.0 connections

2. serial-1.1—serialized requests are made for embedded ob-
jects using up to two persistent HTTP/1.1 connections

3. pipe-1.1—pipelined requests made for embedded objects us-
ing a single persistent HTTP/1.1 connection

4. bundle—retrieve a single bundle of embedded objects.

We also investigated three actions that reduced the amount of
content served to the user:

1. baseonly—retrieve the container object but no embedded ob-
jects. This is intended to measure the potential response time
savings for removing all embedded content.

2. halfobject—retrieve (top) half of the embedded objects using
up to four parallel HTTP/1.0 connections; intended to exam-
ine the effect of removing some embedded objects from the
container object.

3. halfres—retrieve a half resolution version of each embedded
object using up to four parallel HTTP/1.0 connections; in-
tended to examine the effect of creating thinner versions of
each embedded object. The half resolution objects are gener-
ated using the convert program [8] with a sampling ratio
of 50%.

Note that for the serial-1.1 and pipe-1.1 actions, our Apache pro-
totype server currently does not change its policy based on client
classification for when and how long a persistent connection is
maintained. However, the prototype server does support persistent
connections for all clients and we are thus able to test the effec-
tiveness of these actions when used by the client. In practice, if a
deployed server wanted to encourage (it cannot force) a client to
use persistence then it would keep the network connection for the
client open while indicating as part of the response to the client that
the client should use persistent connections.

Many of the actions can be used in conjunction with each other.
For example, we examined the impact of compressing the bundled
object or compressing the container object and retrieving only it.
We show the results for combinations of actions as appropriate.

Actions do add to the costs of the server. The server has to create
and store thinner variants of some objects; it must generate or pre-
compute and store compressed or bundled content. These costs
however can be amortized across multiple requests.

5. RESULTS
We now present the results of our study. We begin by discussing

the stability and correctness of our client classification mechanism
and then discuss the effectiveness of various server actions.

5.1 Stability and Correctness of Client Classi-
fication

We used the methodology described in Section 4 to run tests
from a number of clients to our test servers in September, 2002.
Table 3 summarizes the client classification results from these tests.
The correctness of this classification is compared with expectations
based on the client/server connectivity results shown in Figure 3.
The results in Figure 3 yield three client/server groups: 1) the rel-
atively poor modem and uk clients, which have a low throughput,
but variable RTT, to all servers; 2) the cable-icir pair and all pairs
with the de client, which have a moderate throughput; and 3) the
remaining pairs, which have a relatively high throughput.

In comparing these groups with Table 3, we see that no client
expected to be poor is ever classified as rich, which is essential
because it is highly undesirable to send richer content to a poor
client, further degrading the already poor download performance.
Similarly, no client with high throughput to a server is ever classi-
fied as poor. Overall, the classifier is able to give the classification
consistent with expectations for most client/server pairs over 90%
of the time. The only exceptions are the de-wpi and de-att pairs
from the moderate throughput group. They have similar through-
put but rather different client classification results. Further tests
and inspection suggests that the server delay between serving the
container and last embedded object for both pairs is close to the
five-second threshold we use to classify poor clients. The boundary
effects coupled with the different RTTs and their variation cause the
classifier to show variation in the classification. In our experiments,
we also classify based on requests for all pages in the test set. In
practice, the administrator of a site would fine tune the threshold
and set of pages used for classification to reflect the site content
and client mix.

5.2 Server Actions for Poor Clients
In evaluating server actions, we only examined actions that

would potentially improve performance for clients and did not test
any actions where enhanced content is served to clients classified as
rich. The following discussion focuses on the results for the clients
classified as poor (uk and modem) in Table 3.



Table 3: Distribution of Client Classification Results

Pair Poor Normal Rich

att-icir - 11% 89%
att-wpi - - 100%
cable-att - 11% 89%
cable-icir 10% 88% 2%
cable-wpi - 12% 88%
de-att 73% 27% -
de-icir 7% 92% 1%
de-wpi 24% 74% 2%
modem-att 99% 1% -
modem-icir 99% 1% -
modem-wpi 97% 3% -
uk-att 100% - -
uk-icir 100% - -
uk-wpi 97% 3% -

As shown in Figure 3, the connectivity between the two poor
clients and the three servers is relatively consistent in terms of
throughput, but shows variation in the round-trip time. In the fol-
lowing, we examine the results for these clients.

Table 4 shows the results for the uk-wpi client/server pair, which
has the lowest latency among all low throughput client/server pairs.
The table shows the results of actions for 8 of the 27 buckets of
content mix shown in Table 2. These buckets represent 71% of the
actual pages for the respective data sets. Space limitations prevent
showing results for all 27 buckets. The top row in the table shows
the average time in seconds to retrieve a page with the given mix of
content. The remaining actions are divided into lossless, which do
not change the content served to the client, and lossy, which change
the content served.

The results show that the time to retrieve a page with large con-
tainer page, a large number of embedded objects and a large num-
ber of embedded bytes is 21.08 seconds. Subsequent lines in the
table show the relative percentage improvement if the various ac-
tions are taken. For emphasis on significant differences, server ac-
tions that yield greater than 20% improvement are highlighted. For
example, using a compressed version of the container document
for this bucket saves 22% of the 21.08 seconds. Actions yielding
performance degradation are shown with a 0. None of the server ac-
tions we considered should degrade performance, but the measured
relative percentage improvement for actions yielding only a small
performance benefit can be negative due to variation in the network
conditions. The cases of negative improvement were generally less
than 10% or 0.25 seconds.

Overall the results show that compression of the container ob-
ject has a significant effect for buckets with larger container ob-
jects, but the lossless actions of pipelining and bundling do not
show at least 20% improvement. The combination of first bundling
then compressing the embedded objects also leads to a more sig-
nificant improvement in download time, especially for pages with
a large number of embedded objects. The improvement of com-
pressed bundling over bundling alone suggests that the overhead of
HTTP response headers has some significance for clients with low
throughput and relatively low latency. The action of serving only
the container object yields a significant cost savings for all content
mixes. Serving only half of the embedded objects also has a signifi-
cant effect, but trying to reduce the size of embedded objects while
still serving the same number of objects has little positive effect,
largely because many of the objects are already small.

Table 5 shows the results for the uk-icir pair, which has low

throughput and high latency. The significance of compressing the
container page is reduced as the latency grows, while pipelining
and bundling yield more significant improvement than compres-
sion. The lossy actions of reducing or eliminating the number of
embedded objects yields significant performance gains, but again
reducing the size of embedded objects does not.

The results for modem client to the AT&T server are shown in
Table 6 and are representative of results from this client to the other
servers. Despite similar RTT and throughput values as the uk-wpi
pair in Table 4, the modem-att pair shows differences in the ef-
fects of some actions. Compression is much less effective for this
client, which is not surprising because this test was performed on
a machine running Win2K, which enables software compression
by default. Hence, it is not as beneficial for the server to com-
press the container object. The results do show similar benefits for
pipelining and bundling as in Table 4. In contrast to Table 4, the
use of reduced quality images does improve the response time for
this client. This is again due to the use of software compression,
which effectively increases the fraction of bytes in the embedded
images by reducing the the size of the container document and the
request/response headers. As a result, reducing the quality of em-
bedded images yields more significant improvement than without
compression.

5.3 Server Actions for Normal and Rich
Clients

While the server would not take a mitigating action for clients
classified as normal or rich in Table 3, we did collect results on
server action effectiveness as part of our experiments. We show the
results for a medium and high throughput client/server pair because
if a server supports lossless actions for poor clients, it could use the
actions for other clients as well.

Table 7 shows results for the de-att client/server pair, which has
medium throughput in the results shown in Figure 3. This client
also has a number of accesses where it is classified as poor. The
relative improvement for compression is not significant, but the im-
pact of pipelining and bundling have a significant effect. These
results indicate that for better connected clients, the amount of
content is less important than the reducing the impact of of re-
quests. The tone of the results is similar in Table 8 for the cable-wpi
client/server pair, which also has a high throughput, but a lower la-
tency. The other high throughput client/server pairs shown in Fig-
ure 3 yield similar results.

5.4 Server Action Discussion
The results show that the lossy action of removing embedded ob-

jects is the only action that has a significant effect in all cases. Sim-
ply reducing the quality of embedded objects without reducing the
number does not yield a significant improvement under virtually
all circumstances except for the modem client. This result empha-
sizes the need for client classification as a server site might want
to improve response time for its poor clients, but does not want to
unnecessarily reduce the quality for its other clients.

The lossless actions, which could be potentially applied to any
type of client, are less consistent in their usefulness to reduce re-
sponse time. Compression is an attractive action to take because
most clients are already capable of handling it and prior work [14]
has shown that decompression costs are insignificant. However, we
did not find it had a significant effect on reducing response time for
well-connected clients. In addition, some poor clients, such as our
modem client, may already have compression enabled, which re-
duces the effect by the server. The effectiveness is also reduced for
poor clients as the latency between the client and server increases.



Table 4: uk-wpi—Para-1.0 Retrieval Time and Percentage Improvements of Actions

Container Bytes-Embedded Objects-Embedded Bytes
Action S-S-S S-M-M M-M-M M-M-L M-L-L L-M-M L-L-M L-L-L
para-1.0 2.05s 5.95s 8.63s 12.70s 17.99s 11.72s 12.64s 21.08s
pipe-1.1 10 19 13 6 7 10 15 6
compress 15 5 28 20 13 41 40 22
bundle 0 9 7 7 18 5 15 15
bundle.gz 0 26 19 20 28 14 22 24
baseonly 68 89 74 82 87 65 67 80
halfobject 48 40 23 33 27 20 24 25
halfres 6 8 8 0 15 6 5 13

Table 5: uk-icir—Para-1.0 Retrieval Time and Percentage Improvements of Actions

Container Bytes-Embedded Objects-Embedded Bytes
Action S-S-S S-M-M M-M-M M-M-L M-L-L L-M-M L-L-M L-L-L
para-1.0 6.75s 13.64s 16.61s 20.61s 32.41s 20.28s 26.41s 36.08s
pipe-1.1 28 40 30 18 31 24 40 27
compress 17 5 17 15 6 26 22 13
bundle 0 23 13 8 31 11 32 28
bundle.gz 6 32 20 17 38 17 37 35
baseonly 71 85 72 77 85 65 73 80
halfobject 37 32 23 36 33 18 31 29
halfres 22 0 0 0 4 0 0 3

Table 6: modem-att—Para-1.0 Retrieval Time and Percentage Improvements of Actions

Container Bytes-Embedded Objects-Embedded Bytes
Action S-S-S S-M-M M-M-M M-M-L M-L-L L-M-M L-L-M L-L-L
para-1.0 2.63s 7.84s 9.25s 13.88s 20.40s 10.80s 12.43s 21.95s
pipe-1.1 9 0 0 3 10 0 9 9
compress 6 7 14 6 1 15 8 2
bundle 0 19 16 7 17 13 26 16
bundle.gz 0 23 20 13 20 16 29 19
baseonly 70 90 80 86 91 70 74 85
halfobject 52 41 36 50 34 29 36 30
halfres 30 27 22 29 30 18 16 28

Table 7: de-att—Para-1.0 Retrieval Time and Percentage Improvements of Actions

Container Bytes-Embedded Objects-Embedded Bytes
Action S-S-S S-M-M M-M-M M-M-L M-L-L L-M-M L-L-M L-L-L
para-1.0 2.47s 8.18s 8.60s 7.49s 11.09s 9.44s 10.19s 11.93s
pipe-1.1 48 66 56 35 39 59 46 42
compress 0 0 0 0 0 10 0 8
bundle 28 75 74 70 76 70 77 73
bundle.gz 32 71 70 70 79 67 80 75
baseonly 82 94 90 88 92 89 90 91
halfobject 48 32 33 48 30 35 13 32
halfres 0 13 11 0 6 19 0 12



Table 8: cable-wpi—Para-1.0 Retrieval Time and Percentage Improvements of Actions

Container Bytes-Embedded Objects-Embedded Bytes
Action S-S-S S-M-M M-M-M M-M-L M-L-L L-M-M L-L-M L-L-L
para-1.0 0.58s 1.58s 1.81s 2.27s 3.57s 2.05s 2.58s 3.80s
pipe-1.1 38 60 52 50 59 47 47 56
compress 0 0 0 10 9 1 10 14
bundle 29 56 47 47 61 42 56 58
bundle.gz 33 61 52 51 65 46 59 61
baseonly 72 89 82 86 91 77 82 87
halfobject 53 21 18 34 31 16 38 29
halfres 4 0 0 2 6 0 3 6

Bundling of content shows a significant effect for better-
connected clients and when the latency is large for poor clients.
Combining it with compression is useful for these poor clients,
but it does not show much additional benefit for better-connected
clients.

The other lossless action we studied was server support for per-
sistent connections, both with serialized and pipelined requests.
Results for persistent connections with serialized requests were
not shown in the tables because it did not show significant perfor-
mance improvement under a wide variety of client/content condi-
tions. However, pipelining does have a significant effect for clients
with a high throughput or RTT. This can be an effective action for
clients with a high delay to a server, but the server can only con-
trol the persistence of the connection, it cannot force the client to
actually pipeline the requests.

6. RELATED WORK
Different approaches have been investigated to improve response

time for users. One approach has been to investigate alternate poli-
cies to mark network packets for improved interactive network ap-
plication performance [17]. This approach seeks to improve perfor-
mance for all Web clients, rather than for clients of a specific Web
server. Work in [1] seeks to adapt the content served to users based
on server load. As a server becomes loaded it begins to degrade
the content served to lower-priority clients. Another approach is
for Web servers to take into account user expectations in schedul-
ing requests [5]. Subsequent studies have proposed alternate ad-
mission control and server scheduling policies [7, 6] for improved
response time of their clients. In contrast to these approaches, our
work includes a working server prototype and examines a broader
set of server actions that could be taken in response to poor client
performance.

The concept of dynamically altering multimedia content in a
Web page depending on network path characteristics was first re-
ported in a United States patent [13]. In this proposed scheme,
a Web server would monitor a variety of network characteristics
(such as round trip time, packet loss) between itself and the client
and correspondingly adjust the quality of the content returned to
the client. However, this patent deals exclusively with altering the
content or its delivery. It does not cover the range of other server ac-
tions that are part of our approach. Additionally, the network aware
clustering we use to construct a coarse grouping of clients has been
shown to be superior to the “nearness” approach discussed in [13].
We are not aware of any published research on the idea proposed in
this patent.

Rather than let the server estimate a client’s characteristics, other
approaches can be used. Explicit client specification of network
connectivity is used in many multimedia players. The SPAND sys-

tem uses an approach where a group of clients estimate cost to re-
trieve resources and share it amongst themselves [18]. If available,
these approaches are useful, but a client may not know connectivity
information or this may information may change over time.

7. CONCLUSIONS AND ONGOING WORK
In this work we present the results of evaluating a modified Web

server that is capable of classifying clients online, delivering modi-
fied server actions, and measuring the latency reduction to different
clients all on a common platform. We can also evaluate the cumu-
lative effect of two or more actions. Administrators of high volume
Web sites can benefit from our results by examining their content
mix to see how different actions will benefit their clients.

The overhead imposed on the server as a result of classifying
clients and taking alternate actions is small: on average 75 mi-
croseconds and thus not noticeable to an end user. Even under
overloaded conditions our server’s degradation is reasonable. Note
that, under overloaded conditions, site administrators can simply
turn off classification to avoid incurring any costs. However, the al-
ternate action available for poor clients can be used for all clients,
if the server is overloaded. For example, www.cnn.com site re-
sorted to a simpler, text-oriented home page on September 11th,
2001 in order to serve more clients.

Results from our classification of clients shows that classifica-
tions largely match the expected values based on our measurements
of the client connectivity. The results are relatively stable over the
lifetime of a client test, although the mechanism can adapt over a
longer period of time if a client’s connectivity does vary. These
results are particularly encouraging because we used all page re-
quests for classification and used the same classification thresholds
for all tests. Classification accuracy can only be improved for in-
dividual Web sites through appropriate selection of thresholds and
pages to use for classification.

Client classification is important because only the lossy server
actions of reducing or eliminating embedded objects were found
to be significantly reduce download time in all cases. The loss-
less actions of pipelining and bundling yielded significant per-
formance improvements for poor clients with long latencies and
better-connected clients, but both of these actions require support
from clients. Compression, more widely supported by current
browsers, was most effective for poor clients with relatively shorter
latencies or all poor clients when combined with bundling. How-
ever, compression is a default option for some client operating sys-
tems, so its effect for those clients is reduced.

While the reduction of time to glass will vary with server ac-
tion and the resource being downloaded, a server can carry out a
few simple actions to establish benchmarks of potential reduction.
For example, if the choice of a specific compression algorithm on



certain resources requested often reduces the size by a significant
amount, it would be worth considering using it. Earlier work [14]
has shown that this is feasible. Similarly, for each of the other
server actions, one could establish basic reduction thresholds and
test it with clients of differing connectivity. Such actions need to
be done only for a few resources for a few different levels of con-
nectivity and can be applied broadly.

As part of ongoing work, we are looking at other possible server
actions that matter for repeat accesses for a pages (such as delta en-
coding) and policies regarding cacheability of objects. Finally, our
testing methodology did not allow us to test the usefulness of client
clustering in the classification process. In our earlier work [11], we
found this technique to be particularly useful for some sites. We
would like to create a test for clustering where we have multiple
live clients with different IP addresses in the same cluster.

Acknowledgments
The authors would like to thank those who supplied us data for
the project in the form of proxy logs without which such research
would be impossible. In addition, we thank all those who have
given us access to their machines to conduct our experiments. Fi-
nally, we wish to thank the anonymous reviewers for their com-
ments on an earlier version of this paper.

8. REFERENCES
[1] T. F. Abdelzaher and N. Bhatti. Web Server QoS

Management by Adaptive Content Delivery. In Proceedings
of the International Workshop on Quality of Service, London,
England, June 1999.
http://www.eecs.umich.edu/˜zaher/iwqos99.ps.

[2] Apache Software Foundation. http://www.apache.org.
[3] Apache HTTP Server Benchmarking Tool.

http://httpd.apache.org/docs-2.0/programs/ab.html.
[4] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz.

Analyzing Stability in Wide-Area Network Performance. In
Measurement and Modeling of Computer Systems, pages
2–12, 1997.
http://www.cs.cmu.edu/˜srini/Papers/publications/
1997.sigmetric/sigmetrics97.pdf.

[5] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating
User-Perceived Quality into Web Server Design. In
Proceedings of the ninth International World Wide Web
Conference, Amsterdam, The Netherlands, May 2000.
http://www9.org/w9cdrom/92/92.html.

[6] J. Carlstrom and R. Rom. Application-aware Admission
Control and Scheduling in Web Servers. In Proceedings of
the IEEE Infocom 2002 Conference, New York City, June
2002. IEEE.
http://www.ieee-infocom.org/2002/papers/560.pdf.

[7] X. Chen, P. Mohapatra, and H. Chen. An Admission Control
Scheme for Predictable Server Response Time for Web
Accesses. In Proceedings of the Tenth International World
Wide Web Conference, Hong Kong, May 2001.
http://www.cs.ucdavis.edu/˜prasant/pubs/conf/www10.ps.

[8] convert. http://www.imagemagick.org/www/convert.html.
[9] B. Krishnamurthy and J. Wang. On Network-aware

Clustering of Web Clients. In Proceedings of ACM Sigcomm,
August 2000.
http://www.research.att.com/˜bala/papers/sigcomm2k.ps.

[10] B. Krishnamurthy and C. E. Wills. Analyzing Factors that
Influence End-to-End Web Performance. In Proceedings of
the Ninth World Wide Web Conference, Amsterdam, The
Netherlands, May 2000.
http://www.research.att.com/˜bala/papers/www9.html.

[11] B. Krishnamurthy and C. E. Wills. Improving Web
Performance by Client Characterization Driven Server
Adaptation. In Proceedings of the Eleventh International
World Wide Web Conference, Honolulu, Hawaii, USA, May
2002. http://www.research.att.com/˜bala/papers/lac.ps.

[12] B. Krishnamurthy, C. E. Wills, and Y. Zhang. Preliminary
Measurements on the Effect of Server Adaptation for Web
Content Delivery. In Proceedings of the Internet
Measurement Workshop. Short abstract, Nov. 2002.
http://www.research.att.com/˜bala/papers/spinach-sa.ps.

[13] J. C. Mogul and L. S. Brakmo. Method for dynamically
adjusting multimedia content of a web page by a server in
accordance to network path characteristics between client
and server, June 2001. United States Patent 6,243,761.

[14] J. C. Mogul, F. Douglis, A. Feldmann, and
B. Krishnamurthy. Potential Benefits of Delta Encoding and
Data Compression for HTTP. In Proc. ACM SIGCOMM,
Aug. 1997.
http://www.research.att.com/˜bala/papers/sigcomm97.ps.gz.

[15] D. Mosberger and T. Jin. httperf—A Tool for Measuring
Web Server Performance. In Proceedings of WISP ’98,
Madison, Wisconsin, USA, June 1998.
http://www.hpl.hp.com/personal/David Mosberger/httperf.

[16] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux,
H. Lie, and C. Lilley. Network Performance Effects of
HTTP/1.1, CSS1, and PNG. In Proceedings of the ACM
SIGCOMM ’97 Conference. ACM, Sept. 1997.
http://www.acm.org/sigcomm/sigcomm97/papers/p102.html.

[17] W. Noureddine and F. Tobagi. Improving the Performance of
Interactive TCP Applications Using Service Differentiation.
In Proceedings of the IEEE Infocom 2002 Conference, New
York City, June 2002. IEEE.
http://www.ieee-infocom.org/2002/papers/354.pdf.

[18] S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared
Passive Network Performance Discovery. In USENIX
Symposium on Internet Technologies and Systems, Monterey,
California, USA, Dec. 1997.
http://www-2.cs.cmu.edu/˜srini/Papers/publications/
1997.USITS/usits97.ps.

[19] K.-P. Vo. Vmalloc: A General and Efficient Memory
Allocator. Software: Practice and Experience, 26:1–18,
1996. http://www.research.att.com/sw/tools/vmalloc.

[20] K.-P. Vo. CDT: A Container Data Type Library. Software:
Practice and Experience, 27:1177–1197, 1997.
http://www.research.att.com/sw/tools/cdt.

[21] wget. http://www.gnu.org/software/wget/wget.html.
[22] C. E. Wills, M. Mikhailov, and H. Shang. N for the Price of

1: Bundling Web Objects for More Efficient Content
Delivery. In Proceedings of the Tenth International World
Wide Web Conference, Hong Kong, May 2001.
http://www.cs.wpi.edu/˜cew/papers/www01.pdf.


