
STAR: Self-Tuning Aggregation for Scalable Monitoring ∗ †

Navendu Jain, Dmitry Kit, Prince Mahajan, Praveen Yalagandula†, Mike Dahlin, and Yin Zhang
Department of Computer Sciences †Hewlett-Packard Labs

University of Texas at Austin Palo Alto, CA

ABSTRACT
We present STAR, a self-tuning algorithm that adaptively
sets numeric precision constraints to accurately and effi-
ciently answer continuous aggregate queries over distributed
data streams. Adaptivity and approximation are essential
for both robustness to varying workload characteristics and
for scalability to large systems. In contrast to previous stud-
ies, we treat the problem as a workload-aware optimization
problem whose goal is to minimize the total communication
load for a multi-level aggregation tree under a fixed error
budget. STAR’s hierarchical algorithm takes into account
the update rate and variance in the input data distribution
in a principled manner to compute an optimal error distri-
bution, and it performs cost-benefit throttling to direct error
slack to where it yields the largest benefits. Our prototype
implementation of STAR in a large-scale monitoring system
provides (1) a new distribution mechanism that enables self-
tuning error distribution and (2) an optimization to reduce
communication overhead in a practical setting by carefully
distributing the initial, default error budgets. Through ex-
tensive simulations and experiments on a real network mon-
itoring implementation, we show that STAR achieves signif-
icant performance benefits compared to existing approaches
while still providing high accuracy and incurring low over-
heads.

1. INTRODUCTION
This paper describes STAR, a self-tuning, adaptive al-

gorithm for setting numeric precision constraints that pro-
cesses continuous aggregate queries in a large-scale monitor-
ing system.

Scalable system monitoring is a fundamental abstraction
for large-scale networked systems. It serves as a basic build-
ing block for applications such as network monitoring and
management [8, 19, 43], financial applications [3], resource
scheduling [21,42], efficient multicast [39], sensor networks [21,
42], resource management [42], and bandwidth provision-

∗This work is supported in part by the NSF grants CNS-
0546720, CNS-0627020, CNS-0615104, and EIA-0303609.
Navendu Jain is supported by an IBM Ph.D. Fellowship.
†This is an extended version of the VLDB ’07 paper.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

ing [13]. To provide a real-time view of global system state
for these monitoring and control applications, the central
challenge for a monitoring system is scalability to process
queries over multiple, continuous, rapid, time-varying data
streams that generate updates for thousands or millions of
dynamic attributes (e.g., per-flow or per-object state) span-
ning tens of thousands of nodes.

Recent studies [28, 30, 36, 39, 44] suggest that real-world
applications often can tolerate some inaccuracy as long as
the maximum error is bounded and further indicate that
small amounts of approximation error can provide substan-
tial bandwidth reductions. However, setting a static error
budget a priori is both difficult when workloads are not
known in advance and inefficient when workload character-
istics change unpredictably over time. Therefore, for many
applications that require processing of long-running or con-
tinuous queries over data streams, it is important to consider
adaptive approaches for query processing [2,5,7,30].

A fundamental observation behind this work is that an
adaptive algorithm for setting error budgets should embody
three key design principles:
• Workload-Driven Approach: First, to provide a gen-

eral and flexible framework for adaptive error distribution
for different workloads, we need a solution that does not
depend on a priori knowledge about the input data distri-
bution. Rather, a self-tuning algorithm should be based
on first principles and use the workload itself to guide the
process of dynamically adjusting the error budgets.

• Cost-Benefit Throttling: Second, rather than contin-
uously redistributing error budgets in pursuit of a perfect
distribution, our algorithm explicitly determines when the
current distribution is close enough to optimal that send-
ing messages to redistribute allocations will likely cost
more than it will ultimately save given the measured vari-
ability of the workload. For example, in a network moni-
toring service for detecting elephant flows (i.e., attributes
with high frequency [13]), we track bandwidth for tens of
thousands of flows, but the vast majority of these flows are
mice that produce so few updates that further redistribu-
tion of the error budgets is not useful. Avoiding fruitless
optimization in such cases significantly improves scalabil-
ity in systems with tens of thousands of attributes.

• Aggregation Hierarchy: Third, STAR distributes er-
ror budgets hierarchically among both the internal nodes
and the leaves in an aggregation tree. Our primary goal is
to provide a global view of the system by processing and
aggregating data from distributed data streams in real-
time. In such an environment, a hierarchical decentralized
query processing infrastructure provides an attractive so-
lution to minimize communication and computation costs
for both scalability and load balancing. Further, in a hier-
archical aggregation tree, the internal nodes can not only

split the error budget among their children but may also
retain some local error budget to prevent updates received
from children from being propagated further up the tree
e.g., when the net effect of aggregating two or more up-
dates is to cancel each other out.
Unfortunately, existing approaches do not satisfy these

requirements. On one hand, protocols such as adaptive fil-
ters [4, 30] and adaptive thresholded counts [26] can effec-
tively reduce communication overhead given a fixed error
budget for flat (2-tier) topologies, but they offer neither
scalability to a large number of nodes and attributes nor
the benefits of in-network aggregation. On the other hand,
existing hierarchical protocols either assign a static error
budget [29] that cannot adapt to changing workloads, or
periodically shrink error thresholds [11] at each node to cre-
ate redistribution error budget, thus incurring a high load
when monitoring a large number of attributes. Finally, al-
though the previous solutions have an intuitive appeal, their
problem formulation does not explicitly account for varying
workloads (e.g., variance, update rate.) In contrast, STAR’s
self-tuning solution addresses the global optimization prob-
lem of minimizing the total communication overhead under
dynamic workloads.

To address these challenges, STAR’s self-tuning, hierar-
chical approach yields three key properties:
• High Performance: To compute optimal error assign-

ments, STAR formulates an optimization problem whose
goal is to minimize the global communication load in an
aggregation tree given a fixed total error budget. This
model provides a closed-form, optimal solution for adap-
tive setting of error budgets using only local and aggre-
gated information at each node in the tree. Given the
optimal error budgets, STAR performs cost-benefit throt-
tling to balance the tradeoff between the cost for redis-
tributing the error budgets and the expected benefits.
Our experimental results show that self-tuning distribu-
tion of error budgets can reduce monitoring costs by up
to a factor of five over previous approaches.

• Scalability: STAR builds on recent work that uses dis-
tributed hash tables (DHTs) to construct scalable, load-
balanced forests of self-organizing aggregation trees [6,14,
32,42]. Scalability to tens of thousands of nodes and mil-
lions of attributes is achieved by mapping different at-
tributes to different trees. For each tree in this forest
of aggregation trees, STAR’s self-tuning algorithm directs
error slack to where it is most needed.

• Convergence: STAR computes optimal error budgets
and performs cost-benefit analysis to continually adjust
to dynamic workloads. But since STAR’s self-tuning algo-
rithm adapts its solution as the input workload changes, it
is difficult to qualify its convergence properties. Nonethe-
less, STAR guarantees convergence under stable work-
loads and shows good convergence empirically for dynamic
workloads. Further, STAR balances the speed of adaptiv-
ity and robustness to workload fluctuations.
We study the performance of our algorithm through both

simulations and measurements of a prototype implementa-
tion on our SDIMS aggregation system [42] built on top of
FreePastry [15]. Experience with a Distributed Heavy Hit-
ter detection (DHH) application built on STAR illustrates
how explicitly managing numeric imprecision can qualita-
tively enhance a monitoring service. Our experimental re-
sults show the improved performance and scalability bene-

fits: for the DHH application, small amounts of numeric im-
precision drastically reduce monitoring load. For example,
given a 10% error budget, STAR reduces network load by
an order of magnitude compared to the uniform allocation
policy. Further, for 90:10 skewness in attribute load (i.e.,
10% heavy hitters), STAR achieves more than an order of
magnitude better performance than both uniform error al-
location and approaches that do not perform cost-benefit
throttling.

This paper makes three key contributions. First, we present
STAR, the first self-tuning algorithm for scalable aggre-
gation that computes optimal error distribution and per-
forms cost-benefit throttling for large-scale system monitor-
ing. Second, we provide a scalable implementation of STAR
in our SDIMS monitoring system. Our implementation pro-
vides a new distribution abstraction, a dual mechanism to
the traditional bottom-up tree based aggregation, that en-
ables self-tuning error distribution top-down along the ag-
gregation tree to reduce communication load. Further, it
provides an important optimization that reduces communi-
cation overhead in a practical setting by carefully distribut-
ing the initial, default error budgets. Third, our evalua-
tion demonstrates that adaptive error distribution is vital
for enabling scalable aggregation: a system that performs
self-tuning of error budgets can significantly reduce commu-
nication overheads.

The rest of this paper is organized as follows. Section 2
provides background description of SDIMS [42], a scalable
DHT-based aggregation system at the core of STAR. Sec-
tion 3 describes the mechanism and the STAR self-tuning
algorithm for adaptively setting numeric imprecision for re-
ducing monitoring overhead. Section 4 presents the imple-
mentation of STAR in our SDIMS aggregation system, tech-
niques for maintaining precision of query results under fail-
ures, and policies for initializing the error budgets. Section 5
presents the experimental evaluation of STAR. Finally, Sec-
tion 6 discusses related work, and Section 7 provides con-
clusions.

2. BACKGROUND
STAR extends SDIMS [42] which embodies two key ab-

stractions for scalable monitoring: aggregation and DHT-
based aggregation.

2.1 Aggregation
Aggregation is a fundamental abstraction for scalable mon-

itoring [6, 14, 21, 32, 39, 42] because it allows applications to
access summary views of global information and detailed
views of rare events and nearby information.

SDIMS’s aggregation abstraction defines a tree spanning
all nodes in the system. As Figure 1 illustrates, each physical
node in the system is a leaf and each subtree represents a log-
ical group of nodes. Note that logical groups can correspond
to administrative domains (e.g., department or university)
or groups of nodes within a domain (e.g., a /28 subnet with
14 hosts on a LAN in the CS department) [18,42]. An inter-
nal non-leaf node, which we call a virtual node, is simulated
by one or more physical nodes at the leaves of the subtree
rooted at the virtual node.

SDIMS’s tree-based aggregation is defined in terms of an
aggregation function installed at all the nodes in the tree.
Each leaf node (physical sensor) inserts or modifies its local
value for an attribute defined as an {attribute type, attribute

000 111010 101
Physical Nodes (Leaf Sensors)

Virtual Nodes (Internal Aggregation Points)

L0

L1

L2

L3

3 4 2 9 6 1 9 3

7 11 7 12

18 19

37

100 110 001 011

Figure 1: The aggregation tree for key 000 in an
eight node system. Also shown are the aggregate
values for a simple SUM() aggregation function.

name} pair which is recursively aggregated up the tree. For
each level-i subtree Ti in an aggregation tree, SDIMS defines
an aggregate value Vi,attr for each attribute: for a (physical)
leaf node T0 at level 0, V0,attr is the locally stored value
for the attribute or NULL if no matching tuple exists. The
aggregate value for a level-i subtree Ti is the result returned
by the aggregation function computed across the aggregate
values of Ti’s children. Figure 1, for example, illustrates the
computation of a simple SUM aggregate.

2.2 DHT-Based Aggregation
SDIMS leverages DHTs [32–34,38,45] to construct a forest

of aggregation trees and maps different attributes to differ-
ent trees [6, 14, 32, 35, 42] for scalability and load balanc-
ing. DHT systems assign a long (e.g., 160 bits), random
ID to each node and define a routing algorithm to send
a request for key k to a node rootk such that the union
of paths from all nodes forms a tree DHTtreek rooted at
the node rootk. By aggregating an attribute with key k =
hash(attribute) along the aggregation tree corresponding to
DHTtreek , different attributes are load balanced across dif-
ferent trees. Studies suggest that this approach can provide
aggregation that scales to large numbers of nodes and at-
tributes [6,14,32,35,42].

2.3 Example Application
Aggregation is a building block for many distributed ap-

plications such as network management [43], service place-
ment [16], sensor monitoring and control [28], multicast tree
construction [39], and naming and request routing [9]. In
this paper, we focus on a case-study example: a distributed
heavy hitter detection service. We study several other ex-
amples elsewhere [24].

Our case-study application is identifying heavy hitters1 in
a distributed system—for example, the top 10 IPs that ac-
count for a significant fraction of total incoming traffic in the
last 10 minutes [13]. The key challenge for this distributed
query is scalability for aggregating per-flow statistics for tens
of thousands to millions of concurrent flows in real-time. For
example, a subset of the Abilene [1] traces used in our exper-
iments include 80 thousand flows that send about 25 million

1Note that the standard definition of a heavy hitter is an
entity that accounts for at least a specified proportion of
the total activity measured in terms of number of packets,
bytes, connections, etc [13]. We use a slightly different defi-
nition of “heavy hitters” to denote flows whose bandwidth is
greater than a specified fraction threshold of the maximum
flow value.

updates per hour.
To scalably compute the global heavy hitters list, we chain

two aggregations where the results from the first feed into
the second. First, SDIMS calculates the total incoming traf-
fic for each destination address from all nodes in the system
using SUM as the aggregation function and hash(HH-Step1,
destIP) as the key. For example, tuple (H = hash(HH-Step1,
128.82.121.7), 700 KB) at the root of the aggregation tree
TH indicates that a total of 700 KB of data was received for
128.82.121.7 across all vantage points during the last time
window. In the second step, we feed these aggregated total
bandwidths for each destination IP into a SELECT-TOP-10
aggregation with key hash(HH-Step2, TOP-10) to identify
the TOP-10 heavy hitters among all flows.

Although there exist other centralized monitoring services,
in Section 5 we show that using our STAR self-tuning algo-
rithm in the SDIMS aggregation system, we can monitor a
larger number of attributes at much finer time scales while
incurring significantly lower network costs.

3. STAR DESIGN
Arithmetic imprecision (AI) deterministically bounds the

numeric difference between a reported value of an attribute
and its true value [24,31,44]. For example, a 10% AI bound
ensures that the reported value either underestimates or
overestimates the true value by at most 10%.

When applications do not need exact answers and data
values do not fluctuate wildly, arithmetic imprecision can
greatly reduce the monitoring load by allowing caching to
filter small changes in aggregated values. Furthermore, for
applications like distributed heavy hitter monitoring, arith-
metic imprecision can completely filter out updates for most
“mice” flows.

We first describe the basic mechanism for enforcing AI for
each aggregation subtree in the system. Then we describe
how our system uses a self-tuning algorithm to address the
policy question of distributing an AI budget across subtrees
to minimize system load.

3.1 Mechanism
To enforce AI, each aggregation subtree T for an attribute

has an error budget δT that defines the maximum inac-
curacy of any result the subtree will report to its parent
for that attribute. The root of each subtree divides this
error budget among itself δself and its children δc (with
δT ≥ δself +

P

c∈children
δc), and the children recursively

do the same. Here we present the AI mechanism for the
SUM aggregate since it is likely to be common in network
monitoring and financial applications; other standard aggre-
gation functions (e.g., MAX, MIN, AVG, etc.) are described
in the appendix.

This arrangement reduces system load by filtering small
updates that fall within the range of values cached by a sub-
tree’s parent. In particular, after a node A with error budget
δT reports a range [Vmin, Vmax] for an attribute value to its
parent (where Vmax ≤ Vmin + δT), if the node A receives
an update from a child, the node A can skip updating its
parent as long as it can ensure that the true value of the
attribute for the subtree lies between Vmin and Vmax, i.e., if

Vmin ≤ P

c∈children
V c

min

Vmax ≥ P

c∈children V c
max

(1)

where V c
min and V c

max denote the most recent update re-
ceived from child c.

Note the trade-off in splitting δT between δself and δc.
A large δc allows a child to filter updates before they reach
its parent. Conversely, by setting δself > 0, a node can set
Vmin <

P

V c
min, set Vmax >

P

V c
max, or both to avoid fur-

ther propagating some updates it receives from its children.
SDIMS maintains per-attribute δ values so that differ-

ent attributes with different error requirements and differ-
ent update patterns can use different δ budgets in different
subtrees. SDIMS implements this mechanism by defining a
distribution function; just as an attribute type’s aggregation
function specifies how aggregate values are aggregated from
children, an attribute type’s distribution function specifies
how δ budgets are distributed (partitioned) among the chil-
dren and δself .

3.2 Policy Decisions
Given these mechanisms, there is considerable flexibility

to (i) set δroot to an appropriate value for each attribute (ii)
compute Vmin and Vmax when updating a parent, and (iii)
divide δT among δself and δc for each child c (Section 3.3.)

Setting δroot: Aggregation queries can set the root error
budget δroot to any non-negative value. For some applica-
tions, an absolute constant value may be known a priori
(e.g., count the number of connections per second ±10 at
port 1433.) For other applications, it may be appropriate
to set the tolerance based on measured behavior of the ag-
gregate in question (e.g., set δroot for an attribute to be
at most 10% of the maximum value observed) or the mea-
surements of a set of aggregates (e.g., in our heavy hitter
application, we set δroot for each flow to be at most 1% of
the bandwidth of the largest flow measured in the system.)
Our mechanisms support all of these approaches by allowing
new absolute δroot values to be introduced at any time and
then distributed down the tree via a distribution function.
We have prototyped systems that use each of these three
policies.

Computing [Vmin, Vmax]: When either
P

c
V c

min or
P

c
V c

max

goes outside of the last [Vmin, Vmax] that was reported to
the parent, a node needs to report a new range. Given
a δself budget at an internal node, we have some flexi-
bility on how to center the [Vmin, Vmax] range. Our ap-
proach is to adopt a per-aggregation-function range pol-
icy that reports Vmin = (

P

c
V c

min) − bias ∗ δself and
Vmax = (

P

c
V c

max) + (1 − bias) ∗ δself to the parent. For
example, we can set the bias (∈ [0, 1]) parameter as follows:
• bias ≈ 0.5 if inputs are expected to be stationary
• bias ≈ 0 if inputs are expected to be increasing
• bias ≈ 1 if inputs are expected to be decreasing
For example, suppose a node with total δT of 10 and δself

of 3 has two children reporting ([V c
min, V c

max]) of [1, 2] and
[2, 8], respectively, and it reports [0, 10] to its parent. Then,
suppose the first child reports a new range [10, 11], so the
node must report to its parent a range that includes [12, 19].
If bias = 0.5, then the node reports [10.5, 20.5] to its parent
to filter out small deviations around the current position.
Conversely, if bias = 0, the node reports [12, 22] to filter
out the maximal number of updates of increasing values.

3.3 Self-Tuning Error Budgets
The key AI policy question is how to divide a given error

budget δroot across the nodes in an aggregation tree.

A simple approach is a static policy that divides the er-
ror budget uniformly among all the children. E.g., a node
with budget δT could set δself = 0.1δT and then divide the
remaining 0.9δT evenly among its children. Although this
approach is simple, it is likely to be inefficient because dif-
ferent aggregation subtrees may experience different loads.

To make cost/accuracy tradeoffs self-tuning, we provide
an adaptive algorithm. The high-level idea is simple: in-
crease δ for nodes with high load and large standard de-
viation but low δ (relative to other nodes); decrease δ for
nodes with low load and small standard deviation but high
δ. Next, we address the problem of optimal distribution of
error budgets for a 2-tier (one-level) tree and later extend it
as a general approach for a hierarchical aggregation tree.

3.3.1 One-Level Tree
Quantify AI Filtering Gain: To estimate the optimal
distribution of error budgets among different nodes, we need
a simple way of quantifying the amount of load reduction
that can be achieved when a given error budget is used for
AI filtering.

Intuitively, the AI filtering gain depends on the size of
the error budget relative to the inherent variability in the
underlying data distribution. Specifically, as illustrated in
Figure 2, if the allocated error budget δi at node i is much
smaller than the standard deviation σi of the underlying
data distribution, δi is unlikely to filter many data updates.
Meanwhile, if δi is above σi, we would expect the load to
decrease quickly as δi increases until the point where a large
fraction of updates are filtered.

To quantify the tradeoff between load and error budget,
one possibility is to compute the entire tradeoff curve as
shown in Figure 2. However, doing so imposes several diffi-
culties. First, it is in general difficult to compute the trade-
off curve without a priori knowledge about the underlying
data distribution. Second, maintaining the entire tradeoff
curve becomes expensive when there are a large number of
attributes and nodes. Finally, it is not easy to optimize the
distribution of error budgets among different nodes based
on the tradeoff curves.

To overcome these difficulties, we develop a simple met-
ric in STAR to capture the tradeoff between load and error
budget. Our metric utilizes Chebyshev’s inequality in prob-
ability theory, which gives a bound on the probability of
deviation of a given random variable from its mathematical
expectation in terms of its variance. Let X be a random
variable with finite mathematical expectation µ and vari-
ance σ2. Chebyshev’s inequality states that for any k ≥ 0,

Pr(|X − µ| ≥ kσ) ≤ 1

k2
(2)

For AI filtering, the term kσ represents the error budget
δi for node i. Substituting for k in Equation 2 gives:

Pr(|X − µ| ≥ δi) ≤ σ2
i

δ2
i

(3)

Intuitively, this equation implies that if δi ≤ σi i.e., the error
budget is smaller than the standard deviation (implying k ≤
1), then δi is unlikely to filter many data updates (Figure 2.)

In this case, Equation 3 provides only a weak bound on
the message cost: the probability that each incoming update
will trigger an outgoing message is upper bounded by 1.
However, if δi ≥ kσi for any k ≥ 1, the fraction of unfiltered

σi

iu

Error Budget

M
es

sa
ge

 L
oa

d

Figure 2: Expected message load vs.
AI error budget.

} Curve based
on workload
characteristics

Redistribution Load
Total Load

Frequency of Error Budget Distribution

M
es

sa
ge

 L
oa

d

Monitoring Load

Figure 3: Cost-benefit analysis.

M
ax

im
um

 N
od

e
S

tr
es

s

Number of nodes

Logarithmic Increase

(One−level)
Linear Increase

(Hierarchical)

Figure 4: Maximum node stress: a
one-level tree vs. a hierarchical tree.

updates is probabilistically bounded by
σ2

i

δ2
i

. In general,

given the input update rate ui for node i with error budget
δi, the expected message cost for node i per unit time is:

Mi = MIN

„

1,
σ2

i

δ2
i

«

∗ ui (4)

Compute Optimal Error Budgets: To estimate the
optimal error distribution at each node, we can formulate
an optimization problem of minimizing the total incoming
network load at root R under a fixed total AI budget δT

i.e.,

MIN
P

i∈child(R)

σ2
i ∗ui

(δ
opt
i

)2

s.t.
P

i∈child(R)

δopt
i = δT

(5)

Using Lagrange multipliers yields a closed-form and compu-
tationally inexpensive optimal solution [25]:

δopt
i = δT ∗

3
p

σ2
i ∗ ui

P

c∈child(R)

3
√

σ2
c ∗ uc

(6)

The above optimal error assignment assumes that for all

the nodes, the expected cost per update is equal to
σ2

i

δ2
i

based

on Equation 3 i.e., σi ≤ δi. However, for nodes with high
σi relative to the error budget δi, it is highly likely that an
update will be sent to the root for each incoming message.
These volatile nodes [11] may not reap a significant ben-
efit in spite of being allocated a large fraction of the error
budget.

To account for volatile nodes, we apply an iterative al-
gorithm that determines the largest volatile node j at each
step and recomputes Equation 6 for all the remaining chil-
dren assuming j is absent. A node j is labeled volatile if (1)

σj

δ
opt
j

≥ 1 i.e., the standard deviation is larger than the opti-

mal error budget (under fixed total budget) corresponding
to Equation 3 and (2) the ratio

σj

δ
opt
j

is maximal among all

the remaining children. If no such j exists, the procedure
terminates giving the optimal AI budgets for each node; all
volatile nodes get zero budget since any non-zero budget will
not effectively filter their updates. Note that for our DHT-
based aggregation trees, the fan-in for a node is typically 16
(i.e., a 4-bit correction per hop) so the iterative algorithm
runs in constant time (at most 16 times.)

Relaxation: A self-tuning algorithm that adapts too rapidly
may react inappropriately to transient situations. There-
fore, we next apply exponential smoothing to compute the
new error budget δnew

i for each node as the weighted average

of the new error budget (δopt
i) and the previous budget (δi):

δnew
i = αδopt

i + (1 − α)δi (7)

where α = 0.05.

Cost-Benefit Throttling: Finally, root R needs to send
messages to its children to rebalance the error budget. There-
fore, there is a tradeoff between the error budget redistribu-
tion overhead and the AI filtering gain (as illustrated in
Figure 3.) A naive rebalancing algorithm that ignores such
a tradeoff could easily spend more network messages redis-
tributing δs than it saves by filtering updates. Limiting re-
distribution overhead is a particular concern for applications
like DHH that monitor a large number of attributes, only a
few of which are active enough to be worth optimizing.

To address this challenge, after computing the new error
budgets, the root node computes a charge metric for each
child c, which estimates the number of extra messages sent
by c due to sub-optimal δ:

Chargec = (Tcurr − Tadjust) ∗ (Mc − Mnew
c)

where Mc =
σ2

c∗uc

δ2
c

, Mnew
c =

σ2
c∗uc

(δnew
c)2

, Tcurr is the current

time, and Tadjust is the last time δ was adjusted at R for
child c. Notice that a subtree’s charge will be large if (a)
there is a large load imbalance (e.g., Mc −Mnew

c is large) or
(b) there is a long-lasting imbalance (e.g., Tcurr − Tadjust is
large.)

We only send messages to redistribute deltas when doing
so is likely to save at least k messages (i.e., if chargec > k).
To ensure the invariant that δT ≥ δself +

P

c
δc, we make

this adjustment in two steps. First, we replenish δself from
the child whose δc is the farthest above δnew

c by ordering
c to reduce δc by Min(0.1 δc, δc - δnew

c). Second, we loan
some of the δself budget to the node c that has accumulated
the largest charge by incrementing c’s budget by Min(0.1δc,
δnew

c − δc, max(0.1δself , δself - δnew
self)).

Note that in practice, a parent node should first reclaim
error budget from its children and then assign the accumu-
lated budget to other children as guided by the self-tuning
algorithm.

3.3.2 Multi-Level Trees
For large-scale multi-level trees, we extend our basic al-

gorithm for a one-level tree to a distributed algorithm for a
multi-level aggregation hierarchy. To reduce the maximum
node stress (Figure 4) and the communication load, the in-
ternal nodes not only split δc among their children c but
may also retain δself to help prevent updates received from
their children from being propagated further up the tree.

At any internal node in the aggregation tree, the self-
tuning algorithm works as follows:

Subtree

Q

P R

MQR

MPQ

MPQ MQR

R

Q

P
Virtual Child

Figure 5: Q’s local self-tuning view considers both in-
coming (MPQ) and outgoing bandwidth (MQR.)

R

R

Q

T1 T2

Q T1 T2

MT1Q

MQR

MT2Q
MT1Q

MT2Q

MQR

Figure 6: Global self-tuning view collapses a multi-
level hierarchy to a one-level tree.

1. Estimate optimal distribution of δT across δself and δc.

Each node p tracks its incoming update rate i.e., the aggre-
gate number of messages sent by all its children per time
unit (up) and the standard deviation (σp) of updates re-
ceived from its children. Note that uc, σc reports are ac-
cumulated by child c until they can be piggy-backed on an
update message to its parent.

Given this information, each parent node n computes the
optimal values δopt

v for each child v’s underlying subtree that
minimizes the total system load in the entire subtree rooted
at n. We apply Equation 6 by viewing each child v as repre-
senting two individual nodes: (1) v itself (as a data source)
with update rate uv and standard deviation σv and (2) a
node representing the subtree rooted at v. Figure 5 illus-
trates this local self-tuning view: when any internal node
computes optimal budgets, it aims to minimize both incom-
ing messages received as well as outgoing messages to parent
(by showing parent-link as a virtual child) i.e., minimizing
global communication load from a local perspective.

Given this model, we define LoadFactor for a node v as
3
√

σ2
v ∗ uv. Recursively, we can define AccLoadFactor for a

subtree rooted at node v as:

AccLoadFactorv =

8

>

<

>

:

LoadFactorv (v is a leaf node)
LoadFactorv +

P

j∈child(v)

AccLoadFactorj (otherwise)

Next, we estimate the optimal error budget for v’s subtree
(v ∈ child(n)) as follows:

δopt
v = δT ∗ AccLoadFactorv

AccLoadFactorn

(8)

Equation 8 is globally optimal since it virtually maps a
multi-level hierarchy into a one-level tree (as illustrated in
Figure 6) and in this transformed view, estimates the opti-
mal error budget for each node.

To account for volatile nodes, we apply a similar itera-
tive algorithm as in the one-level tree case to determine the
largest volatile node i (i ∈ child(n)) at each step, recom-
pute Equation 8 for all the remaining children, and so on.
The condition to check whether node i is volatile becomes:

σi

δ
opt

i(self)

≥ 1 and σi

δ
opt

i(self)

≥ σj

δ
opt

j(self)

∀j ∈ child(n) (remaining

children) where δopt

i(self) is computed as:

δopt

i(self) = δT ∗ LoadFactori

AccLoadFactorn

(9)

2. Relaxation: Adaptive adjustment of delta budgets.

δnew
v = αδopt

v + (1 − α)δv

where α = 0.05.

3. Redistribute deltas iff the expected benefit exceeds the re-

distribution overhead.

To do cost-benefit throttling, we recursively apply the for-
mula for a one-level tree to compute the cumulative charge
for a subtree rooted at node v:

AccChargev =

8

>

<

>

:

Chargev (v is a leaf node)
Chargev +

P

j∈child(v)

AccChargej (otherwise)

Note that the terms AccLoadFactorv for computing Equa-
tion 8 and AccChargev can be computed using a SUM ag-
gregation function, and are piggybacked on updates sent by
children to their parents in our implementation.

While beyond the scope of this paper, our algorithms can
be extended in a straightforward manner to adaptively as-
sign error budgets for multiple queries involving overlapping
sets of data objects.

4. STAR IMPLEMENTATION
In this section, we describe three important design issues

for implementing STAR in our SDIMS prototype. First, we
present a new distribution abstraction to provide the func-
tionality of distributing AI error budgets in an aggregation
tree. Second, we discuss different techniques to maintain
AI error precision in query results under failures. Finally,
we describe a practical optimization in our prototype im-
plementation to reduce communication load for large-scale
system monitoring.

4.1 Distribution Abstraction
A distribution function is a dual mechanism to the tra-

ditional bottom-up tree based aggregation that enables an
update to be distributed top-down along an aggregation tree.

The basic mechanism of a distribution function at a node
is as follows: given inputs of (1) a list of children for an
attribute and (2) a (possibly null) distribution message re-
ceived from its parent, return a set of messages destined
for a subset of its children and itself. For self-tuning AI,
each node’s distribution function implements the STAR al-
gorithm that takes an AI error budget from the parent and
distributes it to its children.

In the SDIMS framework, each node implements an Ag-
gregation Management Layer (AML) that maintains attribute
tuples, performs aggregations, stores and propagates aggre-
gate values [42]. On receiving a distribution message, the
AML layer invokes the distribution function for the given
attribute and level in the aggregation tree. The logic of how
to process these messages is implemented by the monitor-
ing application. For example, for self-tuning AI, the STAR

protocol generates distribution messages to either allocate
more error budget to a child subtree or decrease the error
budget of a child subtree.

The AML layer provides communication between an ag-
gregation function and a distribution function by passing
local messages. Conceptually, a distribution function ex-
tends an aggregation function by allowing the flexibility of
defining multiple distribution functions (policies) for a given
aggregation function.

In SDIMS, a store of (attribute type, attribute name,
value) tuples is termed the Management Information Base
(MIB.) For hierarchical aggregation of a given attribute,
each node stores child MIBs received from children and a re-

duction MIB containing locally aggregated values across the
child MIBs. To provide the distribution abstraction, we im-
plemented a distribution MIB that stores as value an object
used for maintaining application-defined state for adaptive
error budget distribution. In STAR, a distribution MIB also
holds a local copy of load information received from child
MIBs.

Given this abstraction, it is simple to implement STAR’s
self-tuning adaptation of error budgets in an aggregation
tree. For example, in STAR

(a) A parent can increase δself by sending a distribution mes-
sage to a child c to reduce its subtree budget, δc

(b) A parent can increase δc for a subtree child c by reducing
its own δself , and

(c) Filter small changes: a parent only changes a δ assignment
if doing so is likely to save more messages than the costs
for rebalancing the δs costs.
The policy decision of when the self-tuning function gets

called can be based on either a periodic timer, processing a
threshold number of messages, or simply on demand.

4.2 Robustness
To handle node failures and disconnections, our STAR

implementation currently provides a simple policy to main-
tain the AI error precision in query results under churn.
On each invocation of the distribution function, it receives
the current child MIB set from the AML layer. If the new
child MIB set is inconsistent with the previous child MIB
snapshot maintained by the distribution function, it takes a
corrective action as follows:
• On a new child event: insert a new entry in the distribu-

tion MIB for the new child, assign an error budget to that
child subtree, and send it to that child for distribution in
its subtree.

• On a dead child event: garbage collect the child state and
reclaim all AI error budget previously assigned to that
child subtree.

• On a new parent event: reset the AI error budget to zero
as the new parent will allocate a new error budget.
Assuming that the error bounds were in a state where

all precision constraints are satisfied prior to a failure, the
temporary lost error due to the failure of a child only im-
proves precision, thus no precision constraints can become
violated. For a new child, it receives a fraction of the error
budget allocation so the correctness still holds. Finally, on
a new parent event, the error budget at its children will be
reset.

Though this policy is simple and conservative, it always
provides correctness that the reported AI error precision in
query results is satisfied. Under this policy, however, a single

failure might incur high communication overhead e.g., if a
whole subtree moves to a new parent, the entire AI budget
is lost resulting in every leaf update being propagated up in
the tree until the new parent sends distribution messages to
reassign the AI error budgets in the affected subtree.

Alternatively, policies based on exploiting tradeoffs be-
tween performance and meeting the error precision bounds
can be used. One such policy is when a child gets connected
to a new parent, it can keep reporting aggregate values to
the new parent with the precision error assigned by the last
parent; the self-tuning algorithm then continually adjusts
the previous subtree AI budget to converge with the new
allocation over time.

Another policy would be to relax the invariant that a sub-
tree meets the AI bound during periods of reconfiguration.
Instead, a new parent can send down a target budget and
aggregate up the actual AI error bound reported by child’s
subtree. This policy is simple for both this failure case and
the common case of adaptively redistributing error budgets.
We leave the empirical comparison of different policies that
trade strict consistency for performance as future work.

4.3 Optimizing for Scalability
In this section, we present an optimization for setting ini-

tial, default error budgets that complements STAR’s adap-
tive settings of error budgets to further reduce the commu-
nication overhead for large-scale system monitoring.

Our self-tuning STAR algorithm eventually converges to a
good distribution of the error budgets among the tree nodes
to yield large benefits. However, there is still a degree of
freedom in setting the initial error budgets for nodes at dif-
ferent levels of a tree. Further, this initialization choice can
significantly affect both the cost and the time to converge
to the final error distribution state.

At one extreme, we can keep the entire budget at the root
and perform on demand error distribution the first time an
update reaches the root. However, this policy is expensive as
the initial message cost in an N-leaf tree would be O(log N)
for an update to reach the root and O(N) for error distri-
bution among all the nodes. For mice flows that only send
a few updates, this cost will be significantly higher than
the benefits of filtering. At the other extreme, we can as-
sign root share of zero and uniformly divide the entire bud-
get among the leaf nodes. This policy will cull majority of
the mice flows at the leaves given sufficient error budgets.
For elephant flows, however, each update is likely to incur
O(log N) messages as it gets propagated to the root, and
that might dominate the total cost. Similarly, the time to
converge will depend on the difference between the initial
and the final error distribution state. Note that some initial
error budget could also be allocated to the internal nodes
which we do not explore in this work.

Therefore for scalability, the key question is how to set the
initial error budgets so that the mice flows never generate
any updates. One simple yet expensive policy is to keep
the entire budget at the root and perform on-demand error
distribution. Another natural policy is to give root share of
zero and uniformly divide the entire budget at all the leaf
nodes. Note that some initial error budget could also be
allocated to the internal nodes which we do not explore in
this work.

In our DHH application, we want to maintain accurate
information for only the heavy hitter flows that generate a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100

N
or

m
al

iz
ed

 L
oa

d

Error Budget to Noise ratio

Guassian Distribution
Uniform Distribution

Figure 7: Normalized load vs. error budget to
noise ratio for two synthetic workloads under a
fixed AI error budget. If noise < AI, a majority
of updates get filtered. The x-axis is on a log
scale.

 1e-04

 0.001

 0.01

 0.1

 1

 0.1 1 10 100

C
os

t p
er

 s
ec

on
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters (freq = 5)

Adap-filters (freq = 10)
Adap-filters (freq = 50)

STAR

Figure 8: Performance benefits due to cost-
benefit throttling. Load vs. error budget to noise
ratio for a 10 node 1-level tree, random walk data.
The graph is on a log-log scale.

significant fraction of the total traffic. For mice flows that
seldom send updates, we arrange for them to get culled at
the leaves and maintain conservative information on their
aggregate values. Note that since SDIMS is an event-driven
system, an initial update needs to be propagated to the root
of an aggregation tree to distribute the error budget among
all the nodes in that tree. Therefore, the initial cost of
distributing the error budget in an N-node aggregation tree
would be O(log N) for a mouse update to reach the root and
O(N) for error distribution. However, for mice flows that
only send a few updates, this cost will be significantly higher
than the benefits of filtering. Our approach is to define a
continuum of policies to divide the total budget δT among
the root and the leaf nodes. These set of policies can be
expressed as:

AIRoot = Rootshare ∗ δT

AILeaf =
δT − AIRoot

N

For example, if Rootshare = 0.5, then the root gets δT

2
and

each leaf gets δT

2∗N
. To implement this policy, on receiving an

update, a leaf node checks if it already has a local AI error
budget. If not, it performs a lookup for the default AILeaf

to filter the update. If the local budget is insufficient, the
leaf sends the update to its parent which in turn applies
AI error filtering. If that update reaches the root, the root
initiates error distribution of its AIRoot error budget across
its tree. Given this approach, we can cull a large fraction of
the mice flows at the leaves, thus preventing their updates
from reaching the root. We show the performance benefit of
using this optimization in Section 5.

5. EXPERIMENTAL EVALUATION
Our experiments characterize the performance and scala-

bility of the self-tuning AI for the distributed heavy hitters
application. First, we quantify the reduction in monitoring
overheads due to self-tuning AI using simulations. Second,
we investigate the reduction in communication load achieved
by STAR for the DHH application in a real world monitoring
implementation. For this evaluation, we have implemented a

prototype of STAR in our SDIMS monitoring framework [42]
on top of FreePastry [34]. We used two real networks: 120
node instances mapped on 30 physical machines in the de-
partment Condor cluster and the same 120-node setup on
30 physical machines in the Emulab [41] testbed. Finally,
we evaluate the performance benefits of our optimization of
carefully distributing the initial, default error budgets us-
ing our prototype implementation. In summary, our exper-
imental results show that STAR is an effective substrate for
scalable monitoring: introducing small amounts of AI er-
ror and adaptivity using self-tuning AI significantly reduces
monitoring load.

5.1 Simulation Experiments
First, to characterize the trade-off between AI error bud-

get and monitoring load, we determine the conditions under
which is the AI error budget effective. Second, we analyze
the effect of cost-benefit throttling on reducing load. Finally,
we compare the performance of STAR, Adaptive-filters [30],
and the uniform allocation strategy for different workloads.

In all experiments, all active sensor are at the leaf nodes of
the aggregation tree. Each sensor generates a data value ev-
ery time unit (round) for two sets of synthetic workloads for
100,000 rounds: (1) a Gaussian distribution with standard
deviation 1 and mean 0, and (2) a random walk pattern in
which the value either increases or decreases by an amount
sampled uniformally from [0.5, 1.5].

Effectiveness of AI Filtering: We first investigate under
what conditions is AI error budget effective. Figure 7 shows
the simulation results for a 4-level degree-6 aggregation tree
with 1296 leaf nodes for the two workloads under uniform
static error distribution. The x-axis denotes the ratio of the
total AI budget to the total noise induced by the leaf sensors
and the y-axis shows the total message load normalized with
respect to zero AI error budget. We observe that when noise
is small compared to the error budget, there is about an or-
der of magnitude load reduction as the majority of updates
are filtered. But, as expected, when noise is large compared
to the error budget, the load asymptotically approaches the
unfiltered load with AI = 0. The random walk pattern al-
lows almost perfect culling of updates for small amounts of

noise whereas for the Gaussian distribution, there is a small
yet a finite probability for data values to deviate arbitrarily
from their previously reported range.

Cost-Benefit Throttling: Next, we quantify the cost of
the periodic bound shrinking used in previous approaches [11,
30] compared with STAR’s cost-benefit throttling. To mo-
tivate the importance of cost-benefit analysis, we perform a
simple experiment here for a one-level tree, and later show
the results for general hierarchical topologies. In our exper-
iments, the following configuration gave the best results for
Adaptive-filters: shrink percentage = 5%, high self-tuning
frequency, and distributing error budgets to a small set (e.g.,
10-15%) of nodes with the highest burden scores, where bur-
den is the ratio of load to error budget. These observations
are consistent with previous work [11].

Figure 8 shows the performance results of uniform alloca-
tion, Adaptive-filters, and STAR for a 10 node 1-level tree
using a random walk pattern with the same step size at
each node. In this case, the uniform error allocation would
be close to the optimal setting. We observe that when er-
ror budget exceeds noise, Adaptive-filters incurs a constant
error redistribution cost per tree (mapped to one or more
attributes) that is proportional to the frequency of error re-
distribution. Thus, for large-scale monitoring services that
require tracking tens of thousands to millions of attributes,
approaches that keep sending messages periodically to ad-
just error budgets such as Adaptive-filters and potential
gains adjustment [11] would incur a high overhead. STAR,
however, performs cost-benefit throttling and does not re-
distribute error when the corresponding gain is negligible.

Evaluating Different Workloads: We now characterize
the performance benefits of STAR compared to other ap-
proaches as skewness in a workload increases. In Figure 9,
the three graphs show the communication load vs. error
budget to noise ratio for the following skewness settings:
(a) 20:80% (b) 50:50% (c) 90:10%. For example, the 20:80%
skewness represents that only 20% nodes have zero noise and
the remaining 80% nodes have a large noise. In this case,
since only a small fraction of the nodes are stable, both
STAR and Adaptive-filters can only reclaim 20% total error
budget from the zero-noise sources and distribute it to noisy
sources to cull their updates. STAR reduces monitoring load
by up to 5x compared to Adaptive-filters. Further, the latter
algorithm’s approach of periodic shrinking of error bounds
at each node only yields small benefits compared to uniform
allocation. For the 50:50 case, both the self-tuning algo-
rithms can claim 50% of the total budget compared to uni-
form allocation and give it to noisy sources. However, even
when the optimal configuration (error budget large com-
pared to noise) is reached, Adaptive-filters keep readjusting
the budgets due to periodic shrinking of error bounds. Fi-
nally, when 90% nodes are stable, STAR gives more than
an order of magnitude reduction in load compared to both
Adaptive-filters and uniform allocation.

Further, we characterize the reduction in monitoring load
due to AI and TI for different sensor data distributions by
running large-scale simulations on synthetic datasets.

Note that overall, for Figures 8 and 9, the advantage of
STAR’s cost-benefit throttling varies with the budget to
noise ratio. We expect that for systems monitoring a large
numbers of attributes (e.g., DHH) some attributes (e.g., the
elephants) will have a low error budget to noise ratios and
gain a modest advantage from STAR, while other attributes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

Figure 10: Performance comparison of STAR vs.
Adaptive-filters and uniform allocation for different
{workload, step sizes/standard deviation} configu-
rations (a) random walk, rank (b) random walk, ran-
dom (c) Gaussian, rank, and (d) Gaussian, random.

(e.g., the mice) will have large ratios and gain large advan-
tages. We typically expect many more mice attributes than
elephant attributes for common monitoring applications.

Next, we compare the performance of STAR, Adaptive-
filters, and uniform allocation under different configurations
by varying input data distribution, standard deviation (step
sizes), and update frequency at each node. For data dis-
tribution, the workload is either generated from a random-
walk pattern or Gaussian. For standard deviation/step-size,
70% of the nodes have uniform parameters as previously de-
scribed; the remaining 30% nodes have these parameters
proportional to rank (i.e., with locality) or randomly as-
signed (i.e., no locality) from the range [0.5, 150].

Figure 10 shows the corresponding results for different
settings of data distribution and standard deviation for a
4-level degree-4 tree with fixed update frequency of 1 up-
date per node per round. We make the following observa-
tions from Figure 10(a). First, when error budget is smaller
than noise, no algorithm in any configuration achieves better
performance than uniform allocation. Adaptive-filters, how-
ever, incurs a slightly higher overhead due to self-tuning even
though it does not benefit. In comparison, STAR avoids self-
tuning costs via cost-benefit throttling. Second, Adaptive-
filters and uniform error allocation reach a cross-over point
having a similar performance. This cross-over implies that
for Adaptive-filters, the cost of self-tuning is equal to the
benefits. Third, as error budget increases, STAR achieves
better performance than Adaptive-filters. Because step-sizes
are based on node rank, STAR’s outlier detection avoids al-
locating budget to the nodes having the largest step-sizes.
Adaptive-filters, however, does not make such a distinction
and computes burden scores based on load thereby favoring
nodes with relatively large step sizes. Thus, since the total
budget is limited, reducing error budget at nodes with small
step sizes increases their load but does not benefit outliers
since the additional slack is still insufficient to filter their
updates. Finally, as expected, when error budget is higher

 0.001

 0.01

 0.1

 1

 0.1 1 10

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

 0.001

 0.01

 0.1

 1

 0.1 1 10

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

 0.001

 0.01

 0.1

 1

 0.1 1 10

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

Error Budget to Noise ratio

Uniform Allocation
Adap-filters

STAR

Figure 9: STAR provides higher performance benefits as skewness in a workload increases. The three figures
show load vs. error budget to noise ratio for different skewness settings (a) 20:80% (b) 50:50% (c) 90:10%.

 1

 10

 100

 1 100 10000 1e+06

C
D

F
 (

%
 o

f f
lo

w
s)

Flow value (KB)

Flow value distribution
 1

 10

 100

 1 100 10000

C
D

F
 (

%
 o

f f
lo

w
s)

Number of updates

Flow updates distribution

Figure 11: CDF of percentage of flows vs. (a) num-
ber of updates and (b) flow-values for the Abilene
dataset. The graph is on a log-log scale.

than noise, all algorithms achieve good performance. In
this configuration, STAR reduces monitoring load by 3x-5x
compared to uniform allocation and by 2x-3x compared to
Adaptive-filters.

Under random distribution of step-sizes as described above,
STAR reduces load by up to 2x compared to Adaptive-filters
and up to 3x against uniform allocation (Figure 10(b).)
Comparing across configurations, all algorithms perform bet-
ter under input distribution of Gaussian compared to the
random-walk model. Overall, across all configurations in
Section 5.1, STAR reduces monitoring load by up to an or-
der of magnitude compared to uniform allocation and by up
to 5x compared to Adaptive-filters.

5.2 Testbed Experiments
In this section, we quantify the reduction in monitoring

load due to self-tuning AI and the query precision of re-
ported results for the DHH monitoring application.

We use multiple netflow traces obtained from the Abi-
lene [1] Internet2 backbone network. The traces were col-
lected from 3 Abilene routers for 1 hour; each router logged
per-flow data every 5 minutes, and we split these logs into
120 buckets based on the hash of source IP. As described in
Section 2.3, our DHH application executes a Top-100 query
on this dataset for tracking the top 100 flows (destination IP
as key) in terms of bytes received over a 30 second moving
window shifted every 10 seconds.

Figure 11 shows the cumulative distribution function (CDF)
of the percentage of network flows versus the number of
bytes (KB) sent by each flow. We observe that about 60%
flows send less than 1 KB of aggregate traffic, 80% flows
send less than 12 KB, 90% flows less than 55 KB, and 99%

of the flows send less than 330 KB during the 1-hour run.
Note that the distribution is heavy-tailed and maximum ag-
gregate flow value is about 179.4 MB. Figure 11 shows the
corresponding CDF graph of the percentage of network flows
versus the number of updates. We observe that 40% flows
send only a single update (a 28 byte IP/UDP packet.) Fur-
ther, 80% flows send less than 70 updates, 90% flows less
than 360 updates, and 99% flows less than 2000 updates.
Note that the number of update distribution is also heavy-
tailed with the maximum number of updates sent by a flow
is about 42,000.

Overall, the 120 sensors track roughly 80,000 flows and
send around 25 million updates. Thus, the monitoring load
for zero AI error budget would be about 58.6 messages per
node per second for each of the 120 nodes. Therefore, a
centralized scheme would incur a prohibitive cost of about
7,000 updates per second for processing this workload.

To address this scalability challenge, we apply our self-
tuning STAR algorithm to reduce the monitoring load. Fig-
ure 12(a) shows the bandwidth cost per node incurred by
STAR under global AI error budgets of 5%, 10%, 15%, and
20% of the maximum flow value per aggregation tree, and
different settings of the Rootshare parameter: 0%, 50%, 90%,
and 100%. We observe that with a Rootshare of 90% and AI
of 5%, we incur an overhead of about 7 messages per node
per second which is roughly three orders of magnitude less
compared to 7,000 messages per second at the root in the
centralized scheme. By increasing the AI error budget to
20%, we can reduce this cost by almost a factor of three to
about 2.5 messages per node per second. Thus, self-tuning
AI even under modest error budgets can provide a significant
reduction in the communication overhead.

Further, by carefully initializing the error budgets to cull
mice updates, we can gain nearly another order of magnitude
load reduction. Comparing different settings of Rootshare

(AI error budget of 20%) in Figure 12(a), we observe that
compared to Rootshare of 90%, Rootshare of 50% reduces
the load by almost a factor of five to about 0.5 messages per
node per second, and Rootshare of 0% (i.e., all error budget
initialized to the leaf nodes) further provides another factor
of two reduction leading to an overall order of magnitude
load reduction to about 0.27 messages per node per second.

However, setting Rootshare of 100% incurs a large over-
head of about 30 messages per node per second since a large
fraction of mice updates reach the root of their trees, and
these root nodes then initiate an error distribution in their

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

AI Error Budget (% max flow value)

BW(Root_share=0%)
BW(Root_share=50%)
BW(Root_share=90%)

BW(Root_share=100%)
 0.01

 0.1

 1

 10

 100

 0 5 10 15 20

M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

AI Error Budget (% max flow value)

DistBW(Root_share=0%)
DistBW(Root_share=50%)
DistBW(Root_share=90%)

DistBW(Root_share=100%)

Figure 12: Performance comparison of the self-tuning algorithm under different settings of initial error
budgets for the DHH application. The left figure shows the average bandwidth cost per node (BW) and the
right figure shows the average redistribution overhead per node (DistBW.)

respective trees. As Figure 12(b) shows, for this Rootshare

setting, the redistribution overhead of sending these error
budgets in each aggregation tree dominates constituting about
70% of the total communication cost. Thus, a good default
setting of the error budgets should initialize some error bud-
get at the leaf nodes to cull a large fraction of the mice flows.

Overall, the self-tuning algorithm eventually sets the er-
ror budgets at different nodes in an aggregation tree in a
way that yields the largest benefits. Yet, we can gain by
initializing AI error budgets to some sensible state so that
majority flows get filtered as early as possible. Finally, we
want to set the error budgets optimally such that (1) the
mice flows never generate any updates and (2) the elephant
flows get filtered to the maximum extent possible. Another
benefit of filtering majority flows (i.e., the mice) early is that
we can later afford to do self-tuning for the small number of
elephant flows to further reduce the total monitoring load.
TAR aims to attain this optimal error setting for a majority
of flows as cheaply as possible by (1) filtering mice flows at
lower levels of the aggregation tree and (2) assigning δself

at the internal nodes to filter modest variations in aggregate
values for elephant flows e.g., even if the child values have
deviated significantly from their previous reported values as
to bypass their own AI error range, the net effect of merging
all children updates may still be close to zero.

Finally, we show the performance benefits of keeping a
non-zero local error budget (δself) at the internal nodes in
an aggregation tree. Intuitively, when an internal node ag-
gregates data across its children’s values, even though the
child values have deviated significantly to bypass their own
error range, the net effect by merging all children updates
may still be close to zero i.e., the children updates cancel
out each other. Figure 13 shows the benefits of the initial
error allocation setting where each internal node keeps 10%
error budget of the total as δself and divides the remaining
90% uniformally among its children for different values of
Rootshare. The different lines in the graph correspond to
different AI budgets. We observe that for Rootshare of 50%,
we achieve only 10% load reduction due to filtering at the
internal nodes. Note that this reduction due to the inter-
nal nodes is in addition to the filtering at the leaf nodes.
However, for Rootshare of 90%, we achieve almost an order
of magnitude load reduction. In this case, the δself at the

 0.1

 1

 10

 0 20 40 60 80 100

N
or

m
al

iz
ed

 M
es

sa
ge

 C
os

t p
er

 s
ec

on
d

Root_share (% total error budget)

AI(5%)
AI(10%)
AI(15%)
AI(20%)

Figure 13: Performance benefits of keeping local er-
ror budget at the internal nodes of an aggregation
tree.

internal nodes is sufficient to filter a significant fraction of
flows. However, setting Rootshare to 100% incurs a high
cost since the error budget needs to be distributed across an
aggregation tree on the first update for a large fraction of
the attributes (total 80K in the DHH application.) There-
fore, as a guiding principle, divide the total error budget in
such a way that (1) the leaf nodes can cull majority of mice
flows and (2) the internal nodes can filter modest variations
in aggregate values for elephant flows. Overall, a scalable
monitoring service can significantly benefit from filtering at
both the leaf and the internal nodes.

In summary, our evaluation shows that adaptive setting
of modest AI budgets can provide large bandwidth savings
to enable scalable monitoring.

6. RELATED WORK
Our STAR algorithm for self-tuning AI error budgets is

part of a larger system building effort, PRISM, to enforce
imprecision bounds and quantify the consistency guarantees
of query results in a large-scale monitoring system [24].

Olston et al. [30] proposed Adaptive-filters (AF), a self-
tuning algorithm for a one-level tree: increase δ for nodes

with high load and low previous δ and decrease δ for nodes
with low load and high previous δ. Our STAR algorithm
differs from AF in three fundamental ways driven by our
focus on scaling to a large number of nodes and attributes:
(1) STAR is hierarchical and uses a distributed algorithm to
divide error budget across internal and leaf nodes while AF
uses a centralized coordinator to distribute error budget to
leaf sensors only. (2) STAR’s mathematical formulation—
using the workload (e.g., update rate, variance) itself to
derive the optimal error budget distribution—provides use-
ful insights and practical benefits. (3) STAR’s cost-benefit
throttling is crucial for systems with (a) stable workloads
where oblivious periodic rebalancing doesn’t benefit or (b)
large numbers of attributes where rebalancing error budgets
for mice is expensive and not helpful.

For hierarchical topologies, Manjhi et al. [29] determine
an optimal but static distribution of slack to the internal
and leaf nodes of a tree for finding frequent items in data
streams. IrisNet [12] filters sensors at leaves and caches
timestamped results in a hierarchy with queries that spec-
ify the maximum staleness they will accept and that trigger
re-transmission if needed. Deligiannakis et al. [11] propose
an adaptive precision setting technique for hierarchical ag-
gregation, with a focus on sensor networks. However, sim-
ilar to Olston’s approach, their technique also periodically
shrinks the error budgets for each tree which limits scal-
ability for tracking a large number of attributes. Further,
since their approach uses only two local anchor points around
the current error budget to derive the precision-performance
tradeoff, it cannot infer the complete correlation shown in
Figure 2 making it susceptible to dynamic workload varia-
tions. None of the previous studies to our knowledge have
used the variance and the update rate in the data distribu-
tion in a principled manner. In comparison, STAR provides
an efficient and practical algorithm that uses a mathemati-
cally sound model to estimate globally optimal budgets and
performs cost-benefit throttling to adaptively set precision
constraints in a general communication hierarchy.

Some recent studies [20, 23, 26] have proposed monitor-
ing systems with distributed triggers that fire when an ag-
gregate of remote-site behavior exceeds an a priori global
threshold. Their solution is based on a centralized architec-
ture. However, this approach suffers from limited scalabil-
ity: central coordinator can become a single point of failure,
no in-network aggregation can occur in one level tree, and
tracking filter slacks on a per-flow per-node basis is infea-
sible for millions of flows in large-scale distributed systems.
Further, a global trigger threshold is not always known a pri-
ori for many network workloads. STAR may enhance such
efforts by providing a scalable way to track top-k and other
significant events.

Other studies have proposed prediction-based techniques
for data stream filtering e.g., using Kalman filters [22], neu-
ral networks [27], etc. There has also been a considerable
interest in the database and sensor network communities
on approximate data management techniques; Skordylis et
al. [37] provide a good survey.

There are ongoing efforts similar to ours in the P2P and
databases community to build global monitoring services.
PIER is a DHT-based relational query engine [21] targeted
at querying real-time data from many vantage-points on the
Internet. Sophia [40] is a distributed monitoring system
designed with a declarative logic programming model. Gi-

gascope [10] provides a stream database functionality for
network monitoring applications.

Query Result Consistency. Consistency has long been
studied in the context of non-aggregating file systems and
databases. Yu et al. [44] propose three metrics—Numerical
Error, Order Error, and Staleness—to capture the consis-
tency spectrum in a distributed replicated system where any
node can perform read or write operations. Numerical error
is similar to AI.

Consistency for aggregation differs in two fundamental
ways. First, aggregation systems are large-scale with many
concurrent writers which implies that it is not feasible to
resolve CAP dilemma [17] by blocking reads during peri-
ods when a writer may be disconnected. So we emphasize
availability by providing conditional consistency: operations
always complete but results are annotated with information
about their quality. Second, in hierarchical aggregation that
accumulates inputs from many sensors, amplification effect
of failures can make results substantially deviate from the
real values.

Traditionally, DHT-based aggregation is event-driven and
best-effort, i.e., each update event triggers re-aggregation for
affected portions of the aggregation tree. Further, systems
often only provide eventual consistency guarantees on its
data [39, 42], i.e., updates by a live node will eventually be
visible to probes by connected nodes.

7. CONCLUSIONS AND FUTURE WORK
Without adaptive setting of precision constraints, large

scale network monitoring systems may be too expensive to
implement even under considerable error budgets because
too many events flow through the system. STAR provides
self-tuning arithmetic imprecision to adaptively bound the
numerical accuracy in query results, and it provides opti-
mizations to enable scalable monitoring of a large number
of stream events in a distributed system.

While STAR focuses on minimizing communication load
in an aggregation hierarchy under fixed data precision con-
straints, it might be useful for some applications and en-
vironments to investigate the dual problem of maximizing
data precision subject to constraints on availability of global
computation and communication resources. Another inter-
esting topic of future work is to consider self-tuning error dis-
tribution for general graph topologies e.g., DAGs, rings, etc.,
that are more robust to node failures than tree networks. Fi-
nally, reducing monitoring load in real-world systems would
also require understanding other dimensions of imprecision
such as temporal where queries can tolerate bounded stale-
ness and topological when only a subset of nodes are needed
to answer a query.

Acknowledgments
We thank Rezaul Chowdhury for many useful discussions,
and Joe Hellerstein, Chris Olston, and the anonymous re-
viewers for their valuable feedback.

8. REFERENCES
[1] Abilene internet2 network.

http://abilene.internet2.edu/.
[2] R. Avnur and J. M. Hellerstein. Eddies: continuously

adaptive query processing. In SIGMOD, 2000.
[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and

J. Widom. Models and issues in data stream systems. In
PODS, 2002.

[4] B. Babcock and C. Olston. Distributed top-k monitoring.
In SIGMOD, June 2003.

[5] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream filters. In
SIGMOD, 2004.

[6] A. Bharambe, M. Agrawal, and S. Seshan. Mercury:
Supporting Scalable Multi-Attribute Range Queries. In
SIGCOMM, Portland, OR, August 2004.

[7] S. Chaudhuri, G. Das, and V. Narasayya. A robust,
optimization-based approach for approximate answering of
aggregate queries. In SIGMOD, 2001.

[8] D. D. Clark, C. Partridge, J. C. Ramming, and
J. Wroclawski. A knowledge plane for the internet. In
SIGCOMM, 2003.

[9] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving
DNS using a Peer-to-Peer Lookup Service. In IPTPS, 2002.

[10] C. D. Cranor, T. Johnson, O. Spatscheck, and
V. Shkapenyuk. Gigascope: A stream database for network
applications. In SIGMOD, 2003.

[11] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.
Hierarchical in-network data aggregation with quality
guarantees. In EDBT, 2004.

[12] A. Deshpande, S. Nath, P. Gibbons, and S. Seshan.
Cache-and-query for wide area sensor databases. In Proc.
SIGMOD, 2003.

[13] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In SIGCOMM, 2002.

[14] M. J. Freedman and D. Mazires. Sloppy Hashing and
Self-Organizing Clusters. In IPTPS, 2003.

[15] FreePastry. http://freepastry.rice.edu.
[16] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat.

SHARP: An architecture for secure resource peering. In
Proc. SOSP, Oct. 2003.

[17] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of Consistent, Available, Partition-tolerant web
services. In ACM SIGACT News, 33(2), Jun 2002.

[18] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with
Practical Locality Properties. In USITS, March 2003.

[19] J. M. Hellerstein, V. Paxson, L. L. Peterson, T. Roscoe,
S. Shenker, and D. Wetherall. The network oracle. IEEE
Data Eng. Bull., 28(1):3–10, 2005.

[20] L. Huang, M. Garofalakis, A. D. Joseph, and N. Taft.
Communication-efficient tracking of distributed cumulative
triggers. In ICDCS, 2007.

[21] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In VLDB, 2003.

[22] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive stream
resource management using kalman filters. In SIGMOD,
2004.

[23] A. Jain, J. M. Hellerstein, S. Ratnasamy, and D. Wetherall.
A wakeup call for internet monitoring systems: The case
for distributed triggers. In HotNets, San Diego, CA,
November 2004.

[24] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin,
and Y. Zhang. PRISM: Precision-Integrated Scalable
Monitoring (extended). Technical Report TR-06-22, UT
Austin Department of Computer Sciences, 2006.

[25] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin,
and Y. Zhang. STAR: Self-Tuning Aggregation for Scalable
Monitoring (extended). Technical Report TR-07-15, UT
Austin Department of Computer Sciences, 2007.

[26] R. Keralapura, G. Cormode, and J. Ramamirtham.
Communication-efficient distributed monitoring of
thresholded counts. In SIGMOD, 2006.

[27] V. Kumar, B. F. Cooper, and S. B. Navathe. Predictive
filtering: a learning-based approach to data stream
filtering. In DMSN, 2004.

[28] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: a Tiny AGgregation Service for Ad-Hoc

Sensor Networks. In OSDI, 2002.
[29] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston.

Finding (Recently) Frequent Items in Distributed Data
Streams. In ICDE, 2005.

[30] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In
SIGMOD, 2003.

[31] C. Olston and J. Widom. Offering a precision-performance
tradeoff for aggregation queries over replicated data. In
VLDB, Sept. 2000.

[32] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
Nearby Copies of Replicated Objects in a Distributed
Environment. In ACM SPAA, 1997.

[33] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
SIGCOMM, 2001.

[34] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-peer
Systems. In Middleware, 2001.

[35] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh. Hourglass: An infrastructure for
connecting sensor networks and applications. Technical
Report TR-21-04, Harvard Technical Report, 2004.

[36] A. Singla, U. Ramachandran, and J. Hodgins. Temporal
notions of synchronization and consistency in Beehive. In
Proc. SPAA, 1997.

[37] A. Skordylis, N. Trigoni, and A. Guitton. A study of
approximate data management techniques for sensor
networks. In WISES, Fourth Workshop on Intelligent
Solutions in Embedded Systems, 2006.

[38] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer lookup
service for internet applications. In ACM SIGCOMM, 2001.

[39] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system
monitoring, management, and data mining. TOCS,
21(2):164–206, 2003.

[40] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An
Information Plane for Networked Systems. In HotNets-II,
2003.

[41] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed
systems and networks. In Proc. OSDI, pages 255–270,
Boston, MA, Dec. 2002.

[42] P. Yalagandula and M. Dahlin. A scalable distributed
information management system. In Proc SIGCOMM, Aug.
2004.

[43] P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and
S. Basu. S3: A Scalable Sensing Service for Monitoring
Large Networked Systems. In Proceedings of the
SIGCOMM Workshop on Internet Network Management,
2006.

[44] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for replicated
services. TOCS, 2002.

[45] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An Infrastructure for Fault-tolerant Wide-area
Location and Routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

9. APPENDIX

9.1 Arithmetic Imprecision
Mechanism:

We first describe in detail the aggregation mechanism for a
single flow in an aggregation tree for the SUM function with
a given AI budget.

9.1.1 Computing SUM for a single attribute:
To enforce AI, each aggregation subtree T for an attribute

has an error budget δT which defines the maximum inaccu-
racy of any result the subtree will report to its parent for
that attribute.

Each node n in the aggregation tree maintains per-attribute
state

Ψn:



δself , Vmin, Vmax, Lself , ∀c
`

δc, V
c

min, V c
max, Lc

´

ff

Whenever n receives an update from a child c, it trig-
gers the aggregation function that re-computes the aggre-
gate value of all latest received updates from its children.
Function: OnChildUpdate (child c, range [V c

min, V c
max], load

Lc)
Step 1. Compute synopses received from children set child(n):

Pmax =

„

X

c∈child(n)

V c
max

«

Pmin =

„

X

c∈child(n)

V c
min

«

(10)

If n has never received an update for this attribute from
a child c, then [V c

min, V c
max] is set to [0, δc].

Step 2. Pass new numeric range through local AI filter:
if (Pmin < Vmin || Pmax > Vmax) {

Vmin = Pmin − bias ∗ δself ; // bias ∈ [0, 1];
Vmax = Vmin + δT ;
Lself + +;
L =

P

c∈child(n) Lc + Lself ;

Send (attr, V max, L) to parent;
}

For redistributing the AI budgets in our self-tuning algo-
rithm, Mself (Mc) are set to the ratio of Lself (Lc for child
c respectively) to the time elapsed since the last AI error
distribution.

9.1.1.1 Leaf node:.
A leaf node can be viewed as an internal node with a

single virtual child (the sensor itself) with AI = 0 i.e., the
sensor s triggers an update [Vs, Vs] to the leaf node i.e., Vs =
V s

max = V s
min. Note that the messaging cost of transmitting

between the virtual child (sensor) and the leaf node Ls = 0
since they reside on the same physical node.

9.1.2 Computing MIN for a single attribute
The mechanism of computing the MIN aggregation func-

tion is similar to the SUM where we replace the SUM com-
putation in Equation 10 by:

Pmax =

„

min
c∈child(n)

V c
max

«

Pmin =

„

min
c∈child(n)

V c
min

«

(11)

9.1.3 Computing MAX for a single attribute
The MAX aggregation function is symmetric to MIN.

Thus, Equation 11 becomes:

Pmax =

„

max
c∈child(n)

V c
max

«

Pmin =

„

max
c∈child(n)

V c
min

«

(12)

Note that for self-tuning AI, error assignments for MAX
and MIN are simple: give the same budget (equal to global
budget) to all the leaf nodes in all the aggregation trees.

In terms of evaluation, the performance graphs for MIN,
MAX will be different from those of SUM in our DHH ap-
plication.

9.1.4 Computing AVG for a single attribute
The AVG aggregation function can be easily computed as

a (SUM, COUNT) pair along the same aggregation tree.

9.2 Optimality of Self-tuning AI Error Distri-
bution

As discussed in Section 3, we can formulate the optimal
distribution of δT among δself and δc is computed as follows:

f : MIN
P

i∈child(R)

σ2
i ∗ui

(δ
opt
i

)2

s.t.
P

i∈child(R)

δopt
i = δT

(13)

We use Lagrangian multipliers to find the extremum of
f(δopt

1 , δopt
2 , . . . , δopt

n) (n = number of children) subject to the

constraint that g

„

P

i∈child(R)

δopt
i − δT

«

= 0 i.e.,

∀i
∂f

∂δopt
i

+ λ
∂g

∂δopt
i

= 0

⇒ ∂

∂δopt
i

„

X

i∈child(R)

σ2
i ∗ ui

(δopt
i)2

«

+ λ
∂

∂δopt
i

„

X

i∈child(R)

δopt
i − δT

«

= 0

⇒ −2 ∗ σ2
i ∗ ui

`

δopt
i

´3
+ λ = 0

⇒ δopt
i = δT ∗

„

3
p

σ2
i ∗ ui

P

i∈child(R)

3
p

σ2
i ∗ ui

«

which gives Equation 6.

