Network Anomography

Yin Zhang yzhang@cs.utexas.edu

Joint work with Zihui Ge, Albert Greenberg, Matthew Roughan

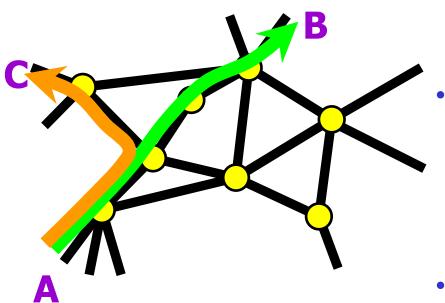
Internet Measurement Conference 2005 Berkeley, CA, USA

Network Anomaly Detection

- · Is the network experiencing unusual conditions?
 - Call these conditions anomalies
 - Anomalies can often indicate network problems
 - · DDoS, worms, flash crowds, outages, misconfigurations ...
 - Need rapid detection and diagnosis
 - Want to fix the problem quickly
- Questions of interest
 - Detection
 - · Is there an unusual event?
 - Identification
 - What's the best explanation?
 - Quantification
 - How serious is the problem?

Network Anomography

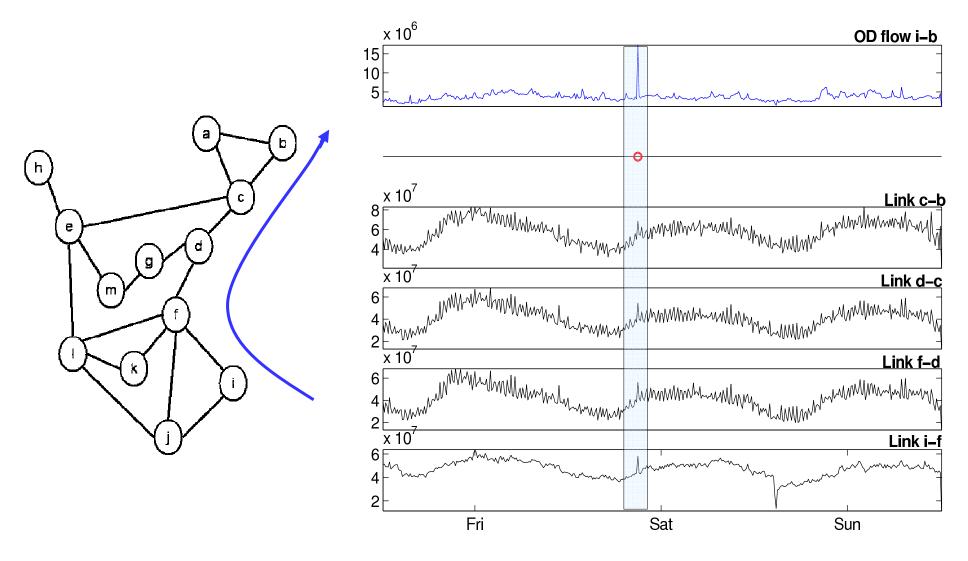
- What we want
 - Volume anomalies [Lakhina04]
 Significant changes in an Origin-Destination flow, i.e., traffic matrix element



What we have

- Link traffic measurements
- It is difficult to measure traffic matrix directly
- Network Anomography
 - Infer volume anomalies from link traffic measurements

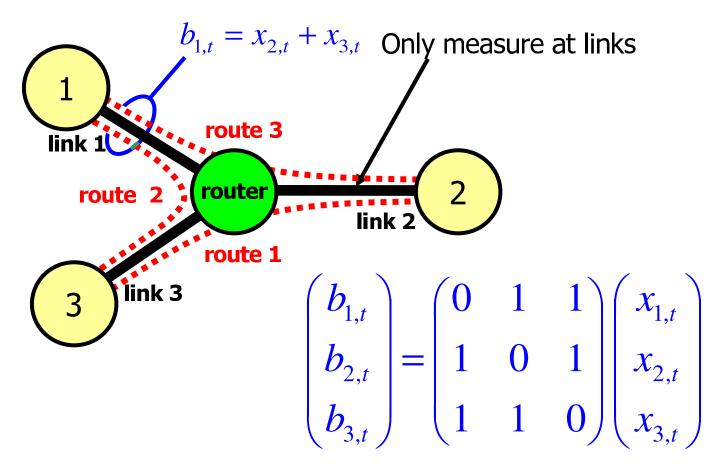
An Illustration



Courtesy: Anukool Lakhina [Lakhina04]

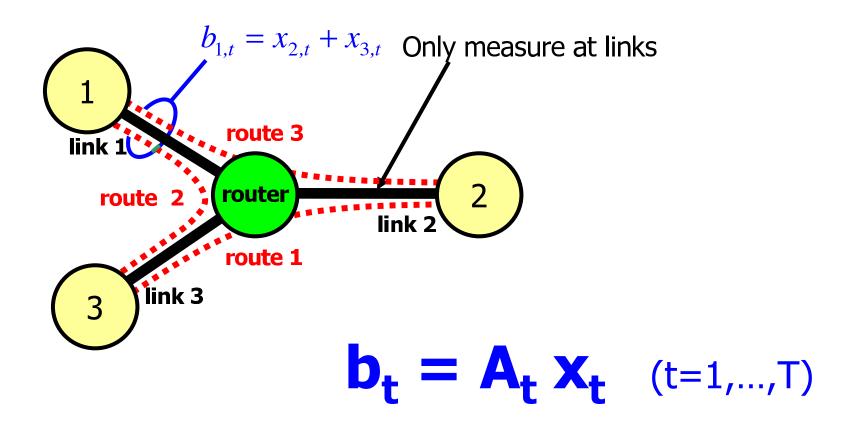
Anomography = Anomalies + Tomography

Mathematical Formulation



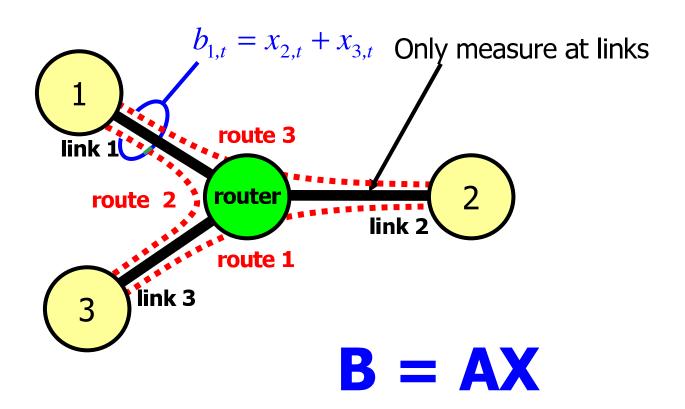
Problem: Infer changes in TM elements (x_t) given link measurements (b_t)

Mathematical Formulation



Typically massively under-constrained!

Static Network Anomography



Time-invariant $A_t (= A)$, $B=[b_1...b_T]$, $X=[x_1...x_T]$

Anomography Strategies

- Early Inverse
 - 1. Inversion
 - Infer OD flows X by solving $b_t = Ax_t$
 - 2. Anomaly extraction
 - Extract volume anomalies \tilde{X} from inferred X

Drawback: errors in step 1 may contaminate step 2

- Late Inverse
 - 1. Anomaly extraction
 - Extract link traffic anomalies B from B
 - 2. Inversion
 - Infer volume anomalies \widetilde{X} by solving $\widetilde{b}_t = A\widetilde{x}_t$

Idea: defer "lossy" inference to the last step

Extracting Link Anomalies B

- Temporal Anomography: $\tilde{B} = BT$
 - ARIMA modeling

$$\begin{array}{ll} \bullet & \text{Diff:} & f_t = b_{t-1} & \widetilde{b}_t = b_t - f_t \\ \bullet & \text{EWMA:} & f_t = (1-\alpha) \ f_{t-1} + \alpha \ b_{t-1} & \widetilde{b}_t = b_t - f_t \end{array}$$

- Fourier / wavelet analysis
 - Link anomalies = the high frequency components
- Temporal PCA
 - PCA = Principal Component Analysis
 - · Project columns onto principal link column vectors
- Spatial Anomography: $\tilde{B} = TB$
 - Spatial PCA [Lakhina04]
 - · Project rows onto principal link row vectors

Extracting Link Anomalies B

- Temporal Anomography: $\tilde{B} = BT$
 - Self-consistent
 - Tomography equation: B = AX
 - Post-multiply by T: BT = AXT

 $\widetilde{B} = A\widetilde{X}$

- Spatial Anomography: $\tilde{B} = TB$
 - No longer self-consistent

Solving $\tilde{b}_t = A \tilde{x}_t$

- Pseudoinverse: $\tilde{x}_t = pinv(A) \tilde{b}_t$
 - Shortest minimal L2-norm solution
 - Minimize $|\tilde{x}_t|_2$ subject to $|\tilde{b}_t A \tilde{x}_t|_2$ is minimal
- Maximize sparsity (i.e. minimize $|\tilde{x}_t|_0$)
 - L_0 -norm is not convex \Rightarrow hard to minimize
 - Greedy heuristic
 - \bullet Greedily add non-zero elements to $\boldsymbol{\tilde{x}}_t$
 - Minimize $|\tilde{b}_t A \tilde{x}_t|_2$ with given $|\tilde{x}_t|_0$
 - L₁-norm approximation
 - Minimize $|\tilde{x}_t|_1$ (can be solved via LP)
 - With noise \Rightarrow minimize $|\tilde{x}_t|_1 + \lambda |\tilde{b}_t A\tilde{x}_t|_1$

Dynamic Network Anomography

- Time-varying A_t is common
 - Routing changes
 - Missing data
 - Missing traffic measurement on a link \Leftrightarrow setting the corresponding row of A_t to 0 in $b_t = A_t x_t$

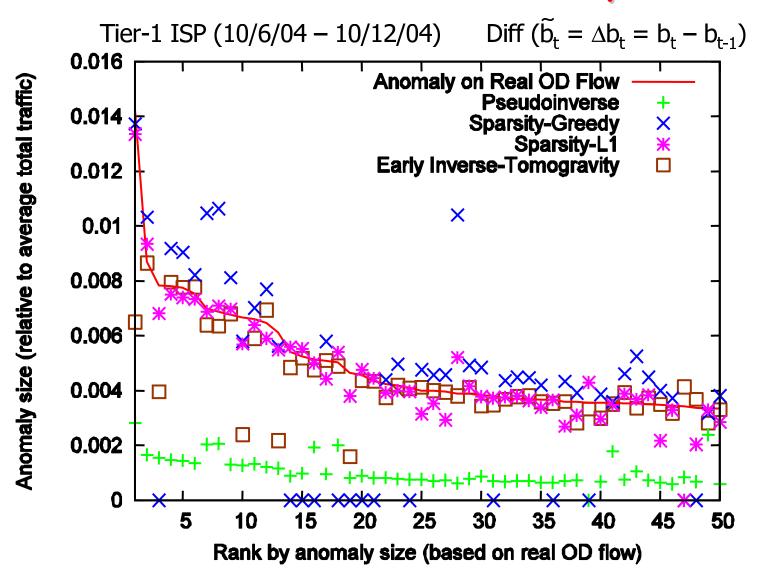
Solution

- Early inverse: Directly applicable
- Late inverse: Apply ARIMA modeling
 - L₁-norm minimization subject to link constraints
 - minimize $\begin{aligned} &|\tilde{x}_t|_1\\ &\text{subject to} \end{aligned} \qquad \tilde{x}_t = x_t x_{t-1}, \ b_t = A_t x_t, \ b_{t-1} = A_{t-1} x_{t-1} \end{aligned}$
 - Reduce problem size by eliminating redundancy

Performance Evaluation: Inversion

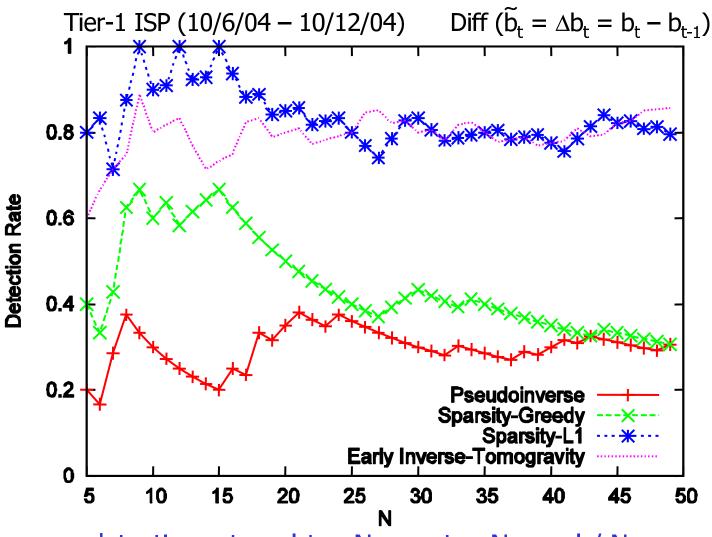
- Fix one anomaly extraction method
- · Compare "real" and "inferred" anomalies
 - "real" anomalies: directly from OD flow data
 - "inferred" anomalies: from link data
- Order them by size
 - Compare the size
- How many of the top N do we find
 - Gives detection rate: $| \text{top N}_{\text{"real"}} \cap \text{top N}_{\text{inferred}} | / N$

Inference Accuracy



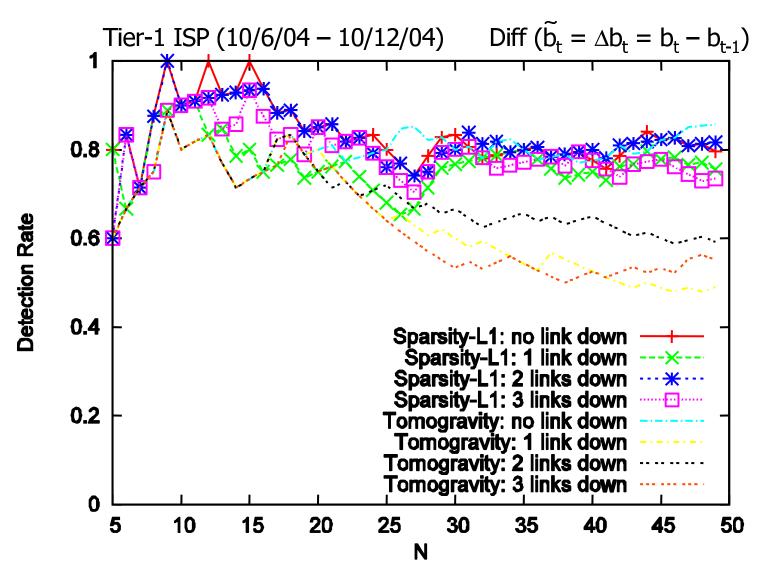
Sparsity-L1 works best among all inference techniques

Inference Accuracy



 $\label{eq:control_def} \mbox{detection rate} = | \mbox{ top } N_{\mbox{\tiny real}} \ \cap \mbox{ top } N_{\mbox{\tiny inferred}} \ | \ / \ N$ Sparsity-L1 works best among all inference techniques

Impact of Routing Changes



Late inverse (sparsity-L1) beats early inverse (tomogravity)

Performance Evaluation: Anomography

- Hard to compare performance
 - Lack ground-truth: what is an anomaly?
- So compare events from different methods
 - Compute top M "benchmark" anomalies
 - · Apply an anomaly extraction method directly on OD flow data
 - Compute top N "inferred" anomalies
 - · Apply another anomography method on link data
 - Report min(M,N) | top M_{benchmark} ∩ top N_{inferred} |
 - M < N ⇒ "false negatives"
 # big "benchmark" anomalies not considered big by anomography
 - $M > N \Rightarrow$ "false positives"
 - # big "inferred" anomalies not considered big by benchmark method
 - Choose M, N similar to numbers of anomalies a provider is willing to investigate, e.g. 30-50 per week

Anomography: "False Negatives"

Top 50	"False Negatives" with Top 30 Benchmark									
Inferred	Diff	EWMA	H-W	ARIMA	Fourier	Wavelet	T-PCA	S-PCA		
Diff	<u>0</u>	0	1	1	5	5	17	12		
EWMA	0	<u>0</u>	1	1	5	5	17	12		
Holt-Winters	1	1	<u>0</u>	0	6	4	18	12		
ARIMA	1	1	0	<u>0</u>	6	4	18	12		
Fourier	3	4	8	8	1	7	19	18		
Wavelet	0	1	2	2	5	<u>0</u>	13	11		
T-PCA	14	14	14	14	19	15	<u>3</u>	15		
S-PCA	10	10	13	13	15	11	1	<u>13</u>		

- 1. Diff/EWMA/H.-W./ARIMA/Fourier/Wavelet all largely consistent
- 2. PCA methods not consistent (even with each other)
 - PCA cannot detect anomalies in the "normal" subspace
 - PCA insensitive to reordering of $[b_1...b_T] \Rightarrow$ cannot utilize all temporal info
- 3. Spatial methods (e.g. spatial PCA) are not self-consistent

Anomography: "False Positives"

Top 30 Inferred	"False Positives" with Top 50 Benchmark									
	Diff	EWMA	H-W	ARIMA	Fourier	Wavelet	T-PCA	S-PCA		
Diff	<u>3</u>	3	6	6	6	4	14	14		
EWMA	3	<u>3</u>	6	6	7	5	13	15		
Holt-Winters	4	4	1	1	8	3	13	10		
ARIMA	4	4	1	1	8	3	13	10		
Fourier	6	6	7	6	<u>2</u>	6	19	18		
Wavelet	6	6	6	6	8	<u>1</u>	13	12		
T-PCA	17	17	17	17	20	13	<u>0</u>	14		
S-PCA	18	18	18	18	20	14	1	<u>14</u>		

- 1. Diff/EWMA/H.-W./ARIMA/Fourier/Wavelet all largely consistent
- 2. PCA methods not consistent (even with each other)
 - PCA cannot detect anomalies in the "normal" subspace
 - PCA insensitive to reordering of $[b_1...b_T] \Rightarrow$ cannot utilize all temporal info
- 3. Spatial methods (e.g. spatial PCA) are not self-consistent

Summary of Results

- Inversion methods
 - Sparsity-L1 beats Pseudoinverse and Sparsity-Greedy
 - Late-inverse beats early-inverse
- Anomography methods
 - Diff/EWMA/H-W/ARIMA/Fourier/Wavelet all largely consistent
 - PCA methods not consistent (even with each other)
 - PCA methods cannot detect anomalies in "normal" subspace
 - PCA methods cannot fully exploit temporal information in $\{x_t\}$
 - Reordering of $[b_1...b_T]$ doesn't change results!
 - Spatial methods (e.g. spatial PCA) are not self-consistent
 - Temporal methods are
- The method of choice: ARIMA + Sparsity-L1
 - Accurate, consistent with Fourier/Wavelet
 - Robust against measurement noise, insensitive to choice of λ
 - Works well in the presence of missing data, routing changes
 - Supports both online and offline analysis

Conclusions

- Anomography = Anomalies + Tomography
 - Find anomalies in $\{x_t\}$ given $b_t = A_t x_t$ (t=1,...,T)
- Contributions
 - 1. A general framework for anomography methods
 - Decouple anomaly extraction and inference components
 - 2. A number of novel algorithms
 - Taking advantage of the range of choices for anomaly extraction and inference components
 - Choosing between spatial vs. temporal approaches
 - 3. The first algorithm for dynamic anomography
 - 4. Extensive evaluation on real traffic data
 - 6-month Abilene and 1-month Tier-1 ISP
- The method of choice: ARIMA + Sparsity-L1

Future Work

- · Correlate traffic with other types of data
 - BGP routing events
 - Router CPU utilization
- Anomaly response
 - Maybe with an effective response system, false positives become less important?
- Anomography for performance diagnosis
 - Inference of link performance based on end-to-end measurements can be formulated as $b_t = Ax_t$
- Beyond networking
 - Detecting anomalies in other inverse problems
 - Are we just reinventing the wheel?

Thank you!