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Motivation

� Recent surge of interest in network 
measurement

� Mathematical modeling

� Operational procedures

� Adaptive applications
� Measurements are most valuable when the 

relevant network properties exhibit
constancy

� Constancy: holds steady and does not change

� We will also use the term steady, when use of 
“constancy” would prove grammatically awkward



11/02/2001 IMW’2001 4

Mathematical Constancy

� Mathematical Constancy

� A dataset is mathematically steady if it can be 
described with a single time-invariant mathematical 
model.

� Simplest form: IID – independent and identically distributed

� Key: finding the appropriate model

� Examples

� Mathematical constancy

� Session arrivals are well described by a fix-rate Poisson 
process over time scales of 10s of minutes to an hour [PF95]

� Mathematical non-constancy

� Session arrivals over larger time scales
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Operational Constancy

� Operational constancy

� A dataset is operationally steady if the quantities 
of interest remain within bounds considered 
operationally equivalent

� Key: whether an application cares about the changes

� Examples

� Operationally but not mathematically steady

� Loss rate remained constant at 10% for 30 minutes and 
then abruptly changed to 10.1% for the next 30 minutes.

� Mathematically but not operationally steady

� Bimodal loss process with high degree of correlation
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Predictive Constancy

� Predictive constancy

� A dataset is predictively steady if past 
measurements allow one to reasonably predict 
future characteristics

� Key: how well changes can be tracked

� Examples

� Mathematically but not predictively steady

� IID processes are generally impossible to predict well

� Neither mathematically nor operationally steady, 
but highly predictable

� E.g. RTT
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Analysis Methodology

� Mathematical constancy

� Identify change-points and partition a timeseries into 
change-free regions (CFR)

� Test for IID within each CFR
� Operational constancy

� Define operational categories based on 
requirements of real applications

� Predictive constancy

� Evaluate the performance of commonly used 
estimators

� Exponentially Weighted Moving Average (EWMA)

� Moving Average (MA)

� Moving Average with S-shaped Weights (SMA)
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Testing for Change-Points

� Identify a candidate change-point using CUSUM

� Apply a statistical test to determine whether the 
change is significant

� CP/RankOrder: 

� Based on Fligner-Policello Robust Rank-Order Test [SC88]

� CP/Bootstrap: 

� Based on bootstrap analysis

� Binary segmentation for multiple change-points

� Need to re-compute the significance levels

Ck = ∑i=1..k (Ti – E(T))Ti

E(T)



11/02/2001 IMW’2001 9

Measurement Methodology

� Two basic types of measurements

� Poisson packet streams (for loss and delay)

� Payload: 64 or 256 bytes; rate: 10 or 20 Hz; 
duration: 1 Hour.

� Poisson intervals Æ unbiased time averages [Wo82]

� Bi-directional measurements Æ RTT

� TCP transfers (for throughput)

� 1 MB transfer every minute for a 5-hour period

� Measurement infrastructure

� NIMI: National Internet Measurement Infrastructure

� 35-50 hosts

� ~75% in USA; the rest in 6 countries

� Well-connected: mainly academic and laboratory sites
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Datasets Description

� Two main sets of data

� Winter 1999-2000 (W1)

� Winter 2000-2001 (W2)

31,700111113M1,60249W2

49

31

# NIMI
sites

48,600169253M3,977W1 + W2

16,90058140M2,375W1

# transfers# thruput
traces# packets# packet

tracesDataset
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Individual Loss vs. Loss Episodes

� Traditional approach – look at individual losses 
[Bo93,Mu94,Pa99,YMKT99].

� Correlation reported on time scales below 200-1000 ms

� Our approach – consider loss episodes

� Loss episode: a series of consecutive packets that are lost

� Loss episode process – the time series indicating when a 
loss episode occurs

� Can be constructed by collapsing loss episodes and the 
non-lost packet that follows them into a single point.

� � �� � ��� �

� � � � �� � �

� �� �ORVV�SURFHVV

HSLVRGH�SURFHVV
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Source of Correlation in the 
Loss Process

� Many traces become consistent with IID 
when we consider the loss episode process

Correlation in the loss process is often due to back-to-back 
losses, rather than intervals over which loss rates become 
elevated and “nearby” but not consecutive packets are lost.

Traces consistent with IID

55%25%Up to 5-10 sec

64%27%Up to 0.5-1 sec

EpisodeLoss
Time scale
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Poisson Nature of 
Loss Episodes within CFRs

� Independence of loss episodes within 
change-free regions (CFRs)

� Exponential distribution of interarrivals within 
change-free regions

� 85% CFRs have exponential interarrivals

86%
88%

IID CFRs

55%Up to 5-10 sec
64%Up to 0.5-1 sec

IID tracesTime scale

Loss episodes are well modeled as homogeneous 
Poisson process within change-free regions.
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Mathematical Constancy of
Loss Episode Process
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Higher loss rate makes the loss episode process less steady

� Change-point test: CP/RankOrder

� “Lossy” traces are traces with overall loss rate over 1%
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Operational Constancy of Loss Rate

� Loss rate categories

� 0-0.5%, 0.5-2%, 2-5%, 5-10%, 10-20%, 20+%

� Probabilities of observing a steady interval of 50 
or more minutes

� There is little difference in the size of steady 
intervals of 50 or less minutes.

71%Episode
1 min

22%Loss
25%Episode

10 sec

57%Loss

Prob.TypeInterval
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Mathematical vs. Operational

� Categorize traces as “steady” or “not steady”

� whether a trace has a 20-minute steady region

0��Mathematically steady
2��Operationally steady

Operational constancy of packet loss coincides with 
mathematical constancy on large time scales (e.g. 1 min), but 

not so well on medium time scales (e.g. 10 sec).

Interval

44-52%74-83%
0.1%2-5%

37-45%6-15%
11%6-9%

10 sec1 min 
Set

02 020202

02

02

02

02



11/02/2001 IMW’2001 17

Predictive Constancy of Loss Rate

� What to predict?

� The length of next loss free 
run

� Used in TFRC [FHPW00]

� Estimators
� EWMA, MA, SMA

� Mean prediction error
E [ | log (predicted / actual) | ]

The parameters don’t matter, nor does the averaging scheme.
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Effects of Mathematical and 
Operational Constancy on Prediction

Prediction performance is the worst for traces that 
are both mathematically and operationally steady
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Delay Constancy

� Mathematical constancy

� Delay “spikes”

� A spike is identified when 

� 5¶�t PD[^�. 5�����PV�` (K = 2 or 4)
where 

� 5¶ is the new RTT measurement; 

� 5�is the previous non-spike RTT measurement; 

� The spike episode process is well described as Poisson 
within CFRs

� Body of RTT distribution (Median, IQR)

� Overall, less steady than loss

� Good agreement (90-92%) with IID within CFRs
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Delay Constancy (cont’d)

� Operational constancy

� Operational categories

� 0-0.1sec, 0.1-0.2sec, 0.2-0.3sec, 0.3-0.8sec, 0.8+sec

� Based on ITU Recommendation G.114

� Not operationally steady

� Over 50% traces have max steady regions under 10 min;

� 80% are under 20 minutes

� Predictive constancy

� All estimators perform similar 

� Highly predictable in general
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Throughput Constancy

� Mathematical constancy

� 90% of time in CFRs longer than 20 min

� Good agreement (92%) with IID within CFRs

� Operational constancy

� There is a wide range

� Predictive constancy

� All estimators perform very similar

� Estimators with long memory perform poorly
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Conclusions

� Our work sheds light on the current degree of 
constancy found in three key Internet path properties

� IID works surprisingly well

� It’s important to find the appropriate model.

� Different classes of predictors frequently used in networking 
produced very similar error levels

� What really matters is whether you adapt, not how you adapt.

� One can generally count on constancy on at least the time 
scales of minutes

� This gives the time scales for caching path parameters

� We have developed a set of concepts and tools to 
understand different aspects of constancy

� Applicable even when the traffic condition changes
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