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2Traffic Engineering (TE)Traffic Engineering (TE)
• Objective
– Adapting the routing of traffic to avoid congestion and make more efficient use of network resource

• Motivation
– High cost of network assets & highly competitive nature of ISP market
– Routing influences efficiency of network resource utilization

• Latency, loss rate, congestion, …
• Two components
– Understand traffic demands
– Configure routing protocols

• This paper focuses on intra-domain TE
– But the basic approach may also apply in inter-domain TE and network optimization in general



3Challenge: Unpredictable TrafficChallenge: Unpredictable Traffic

• Internet traffic is highly unpredictable!
– Can be relatively stable most of the time …
– However, usually contains spikes that ramp up extremely quickly

• We identified sudden traffic spikes in the traces of several networks
– Unpredictable traffic variations  have been observed and studied by other researchers

• [ Teixeira et al. ’04, Uhlig & Bonaventure ’02, Xu et al. ’05 ]
– Confirmed by operators of several large networks via email survey
– Abrupt traffic changes often occur when service is most valuable!

• Many possible causes for traffic unpredictability
– Worms/viruses, DoS attacks, flash crowds, BGP routing changes 

[ Teixeira et al. ’05, Agarwal et al. ’05 ], failures in other networks, load balancing by multihomed customers, TE by peers …
• TE needs to handle unpredictable traffic

– Otherwise, links and/or routers may get unnecessarily overloaded
• Long delay, high loss, reduced throughput, violation of SLA

– Customers can remember bad experiences really well …



4Existing TE SolutionsExisting TE Solutions
• Prediction-based TE
– Examples:

• Off-line:
– Single predicted TM [ Sharad et al. ’05 ]
– Multiple predicted TMs [ Zhang et al. ’05 ]

• On-line: MATE [ Elwalid et al. ’01 ] & TeXCP [ Kandula et al. ’05 ]
– Pro: Works great when traffic is predictable
– Con: May pay a high penalty when real traffic deviates substantially from the prediction

• Oblivious routing
– Examples:

• Oblivious routing [ Racke ’02, Azar et al. ’03, Applegate et al. ’03 ]
• Valiant load-balancing [ Kodialam et al. ’05, Zhang & McKeown ’04 ]

– Pro: Provides worst-case performance bounds
– Con: May be sub-optimal for normal traffic

• The optimal oblivious ratio of several real network topologies studied in [Applegate et al ’03] is ~2



5Our Approach: COPEOur Approach: COPE
Common-case Optimization with Penalty Envelope

C

X

Bound 
for set X

Optimize 
for set C

minf maxd∈C PC(f, d)
s.t. (1) f is a routing

(2) ∀x∈X: PX(f, x) ≤ PE
C: common-case (predicted) TMs
X: all TMs of interest
PC(f,d): common-case penalty function
PX(f,x): worst-case penalty function
PE: penalty envelope



6ModelModel
• Network topology: graph G = (V,E)

– V: set of routers
– E: set of network links

• Traffic matrices (TMs)
– A TM is a set of demands: d = { dab | a,b ∈ V }
– dab: traffic demand from a to b
– Can extend to point-to-multipoint demands

• MPLS-style, link-based routing
– f = { fab(i,j) | a,b ∈ V, (i,j) ∈ E }
– fab(i,j) : the fraction of demand from a to b (i.e., dab) that is routed through link (i,j)
– Paper includes ideas on how to approximate OSPF-style (i.e., shortest path implementable) routing



7Routing Performance MetricsRouting Performance Metrics
• Maximum Link Utilization (MLU): 

• Optimal Utilization

• Performance Ratio
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8COPE InstantiationCOPE Instantiation

C: convex hull of multiple past TMs
– A linear predictor predicts the next TM as a convex combination of past TMs (e.g., EWMA)
– Aggregation of all possible linear predictors � the convex hull

X: all possible non-negative TMs
– Can add access capacity constraints or use a bigger convex hull

PC(f,d): penalty function for common cases– maximum link utilization: U(f,d)
– performance ratio: PR(f,d)

PX(f,x): penalty function for worst cases– performance ratio: PR(f,x)
PE: penalty envelope

– PE = β minf maxx∈X PX(f,x)
– β≥1 controls the size of PE w.r.t. the optimal worst-case penalty 

• β=1 � oblivious routing
• β=∞ � prediction-based TE

minf maxd∈C PC(f, d)
s.t. (1) f is a routing; and (2) ∀x∈X: PC(f, x) ≤ PE



9Current COPE ImplementationCurrent COPE Implementation
1. Collect TMs continuously
2. Compute COPE routing for the next day by solving a linear program (LP)

– Common-case optimization
• Common case: convex hull of multiple past TMs

– All TMs in previous day + same/previous days in last week
• Minimize either MLU or PR over the convex hull

– Penalty envelope
• Bounded PR over all possible nonnegative TMs

– See paper for details of our LP formulation
3. Install COPE routing

• Currently done once per day � an off-line solution
– Can be made on-line (e.g., recompute routing upon detection of significant changes in TM)



10COPE IllustratedCOPE Illustrated

Prediction-based TE

Best common-case
+

Poor worst-case
Oblivious Routing

Poor common-case
+

Best worst-case
COPE

Good common-case
+

Bounded worst-case

Spectrum of TE with unpredictable traffic

Position 
controllable by 
penalty envelope

There are enough unexpected cases � Penalty envelope is required
The worst unexpected case too unlikely to occur �Too wasteful to “optimize” for the worst-case (at the cost of poor common-case performance)



11Evaluation MethodologyEvaluation Methodology
• TE Algorithms

– COPE: COPE with PC(f,d) = PR(f,d) (i.e. performance ratio)
– COPE-MLU: COPE with PC(f,d) = U(f,d) (i.e. max link utilization)
– Oblivious routing: minf maxxPR(f,x) (≈ COPE with β=1)
– Dynamic: optimize routing for TM in previous interval
– Peak: peak interval of previous day + prev/same days in last week
– Multi: all intervals in previous day + prev/same days in last week
– Optimal: requires an oracle

• Dataset
– US-ISP

• hourly PoP-level TMs for a tier-1 ISP (1 month in 2005)
• Optimal oblivious ratio: 2.045; default penalty envelope: 2.5

– Abilene
• 5-min router-level TMs on Abilene (6 months: Mar – Sep. 2004)
• Optimal oblivious ratio: 1.853; default penalty envelope: 2.0
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14Abilene: Performance RatioAbilene: Performance Ratio
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15Abilene: MLU in Common CasesAbilene: MLU in Common Cases
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16Abilene: MLU in Unexpected CasesAbilene: MLU in Unexpected Cases
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18COPE with COPE with InterdomainInterdomain RoutingRouting
• Motivation

– Changes in availability of interdomain routes can 
cause significant shifts of traffic within the domain
• E.g. when a peering link fails, all traffic through that link is
rerouted

• Challenges
– Point-to-multipoint demands �

need to find splitting ratios among exit points
– The set of exit points may change �

topology itself is dynamic
– Too many prefixes �

cannot enumerate all possible exit point changes



19COPE with COPE with InterdomainInterdomain Routing: Routing: 
A TwoA Two--Step ApproachStep Approach

1. Apply COPE on an extended topology to derive good splitting ratios
• Group dest prefixes with same set of exit points into a virtual node
• Derive pseudo demands destined to each virtual node by merging demands to prefixes that belong to this virtual node
• Connect virtual node to corresponding peer using virtual link with infinite BW
• Compute extended topology G’ as G’ = intradomain topology + peers + peering links + virtual nodes + virtual links
• Apply COPE to compute routing on G’ for the pseudo demands
• Derive splitting ratios based on the routes

2. Apply COPE on point-to-point demands to compute intradomain routing
• Use the splitting ratios obtained in Step 1 to map point-to-multipoint demands into point-to-point demands

intradomain topology peer

peerpeer  

peer  

virtual

virtual



20Preliminary EvaluationPreliminary Evaluation

COPE can significantly limit the impact of peering link failures
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21Conclusions & Future WorkConclusions & Future Work
• COPE = Common-case Optimization with Penalty Envelope
• COPE works!

– Common cases: close to optimal; much better than oblivious routing and prediction-based TE with comparable overhead
– Unexpected cases: much better than prediction-based TE, and sometimes may beat oblivious routing
– COPE is insensitive to the size of the penalty envelope; even a small margin in PE improves common-case performance a lot
– COPE can be extended to cope with interdomain routes

• Lots of ongoing & future work
– Efficient implementation of COPE
– COPE with MPLS and VPN
– COPE with OSPF
– COPE with online TE 
– COPE for other network optimization problems
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Thank you!Thank you!


