dFence: Transparent Networkbased Denial of Service Mitigation

Ajay Mahimkar, Jasraj Dange, Vitaly Shmatikov, Harrick Vin, Yin Zhang

> University of Texas at Austin mahimkar@cs.utexas.edu

The Problem

- Denial of Service (DoS) attacks
 - A significant threat to Internet reliability & availability
 - Many forms SYN flood, Data flood, NAPTHA, HTTP request flood, Botnet
- Lots of research and commercial products
 - Speak-up, SIFF, Kill-botz, TVA, Pushback, Cisco Guard, Arbor, ...
- Yet, lots of attacks still out there
 - Feb 6. 2007 DDoS attack on 6 of 13 root DNS servers
 - Domain registrar GoDaddy.com was DDoSed (March 2007)

dFence Principles

- Transparency
 - No software modifications to end-hosts or routers
- In-Network defense
 - Filter attack traffic before it gets close to server
- Shared on-demand infrastructure
 - Multiplex defense resources to protect multiple customers
 - No performance penalty during peace time
- Stateful mitigation
 - Necessary for effective defenses against a broad range of DoS attacks

dFence Overview

Challenges

- Bidirectional Traffic Interception
- Attack Mitigation Functionality
- Dynamic State Management
- Robustness to route changes, failures and DoS attacks on middleboxes

Outline

- Bidirectional Traffic Interception
- Attack Mitigation Functionality
- Dynamic State Management

Inbound Traffic Interception

Inbound Traffic Interception

Outbound Traffic Interception

Outbound Traffic Interception

Outline

- Bidirectional Traffic Interception
- Attack Mitigation Functionality
- Dynamic State Management

Attack Mitigation at Middlebox

- Stateful policies are a good match for TCP-based attacks
- Careful creation of minimal state for connections

Attack Classification	Attack Examples	State Requirement
Spoofed	Spoofed SYN Spoofed TCP data Reflector attacks	Zero
Un-spoofed mis-behaving	NAPTHA Un-spoofed data flood	Temporary
Un-spoofed well-behaving	Normal traffic	Life-time of connection

An Example Policy

- Mitigating Spoofed Attacks
 - SYN flood: exhaust server resources by flooding it with bogus SYN requests
 - Network-based SYN cookie generation
 - Advantages over server-side
 - Transparency
 - Multiplexing

SYN Cookie [D. Bernstein]

Client

Network-based SYN Cookie

- Challenges
 - How to handle mismatch in sequence number generated by middlebox and server
 - How does middlebox handle data received from clients before its handshake with server is complete

What does <u>not</u> work

- Full TCP splicing with address / port / sequence / acknowledgement number translations
 - Increases state requirement at middlebox
 - Adds more processing burden
- Buffer data packets till handshake with server is complete
 - Opens door to another DoS attack
- Drop data packets till handshake with server is complete
 - Client enters TCP time-out and suffers 3 second delay

Client

Outline

- Bidirectional Traffic Interception
- Attack Mitigation Functionality
- Dynamic State Management

Dynamic State Management

- Middlebox introduction
 - How to capture state for ongoing connections?
 - Naïve solution: terminate all ongoing connections and let clients start anew (not transparent!!)
 - Our solution
 - Add grace period to transparently bootstrap state for ongoing connection
 - During bootstrap
 - SYN cookies for new connection request
 - Data packets (good or bad) are forwarded to the server
 - State established for data packets for which ACK is seen

Dynamic State Management

- Middlebox removal
 - What about active connections established via middlebox ?
 - Naïve solution: terminate all and remove middlebox from the data path (not transparent!!)
 - Our solution
 - Add grace period during which the connections established via middlebox undergo sequence and acknowledgement numbers translation
 - New connection requests are forwarded to the server (no SYN cookies)
 - No state established for new connections during the removal phase

Experimental Setup

- XORP for Traffic Interception
- Intel IXP Network Processor for attack mitigation policies
- IXIA for attack workload, iperf/httperf for legitimate traffic

Conclusion

- dFence DoS mitigation system
 - Transparent solution
 - In-network defense
 - Shared on-demand infrastructure
 - Stateful mitigation
- Can be viewed as providing group insurance service
- General platform to deploy other network security services such as malware filtering

Thank You!

Backup Slides

Flow Pinning

- Why Pinning ?
 - Ensure both directions of flow go through the same middlebox
 - Ensure that the same middlebox handles the flow even when there are route changes / failures
- Pin the flow to a home middlebox
 - Home middlebox = hash₁ (src IP, src port) EXOR hash₂ (dest IP, dest port)
 - Symmetric

Bootstrap Interval T_b

Too high

• Severe damage during bootstrap phase

Too low

Ongoing connections may get terminated

Trace analysis shows that majority of connections has packet IATs of the order a few seconds

XORP BGP Policy

```
policy-statement next-hop-selection {
   term 1 {
       to { network4: 10.0.0/24 }
       then { localpref: 300 }
   }
}
protocols {
   bgp {
        import "next-hop-selection"
       export "next-hop-selection"
   }
}
```

Middlebox Attacks & Defenses

- Exhausting the connection state
 - Defense: Limit number of connections from any single host
 - Middlebox only maintains state for un-spoofed well-behaved sources
- Adaptive traffic variation attack
 - ON/OFF attack pattern
 - Defense: Avoid rapid introduction & removal of middleboxes
 - Randomize the removal phase time interval
- Werewolf attack
 - Behave legitimate at first, get established in middlebox state and then bombard with attack traffic
 - Defense: Periodic measurement of traffic sending rates & source prefix white-listing

End-to-end latency

