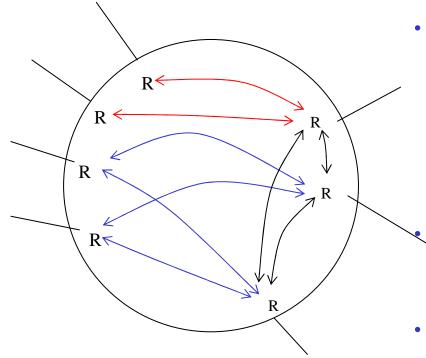
Experimental Design for Practical Network Diagnosis

Yin Zhang University of Texas at Austin yzhang@cs.utexas.edu

Joint work with Han Hee Song and Lili Qiu

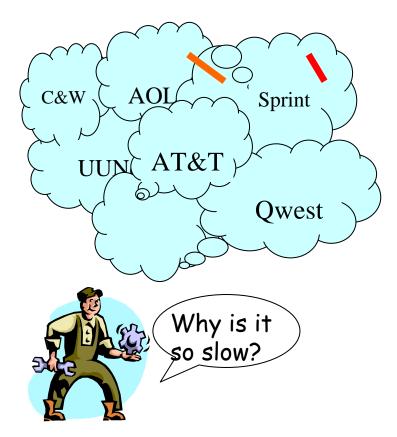
MSR EdgeNet Summit June 2, 2006

Practical Network Diagnosis


- Ideal
 - Every network element is self-monitoring, self-reporting, self-..., there is no silent failures ...
 - Oracle walks through the haystack of data, accurately pinpoints root causes, and suggests response actions
- Reality
 - Finite resources (CPU, BW, human cycles, ...)
 - \rightarrow cannot afford to instrument/monitor every element
 - Decentralized, autonomous nature of the Internet
 - \rightarrow infeasible to instrument/monitor every organization
 - Protocol layering minimizes information exposure
 - \rightarrow difficult to obtain complete information at every layer

Practical network diagnosis: Maximize diagnosis accuracy under given resource constraint and information availability

Design of Diagnosis Experiments


- Input
 - A candidate set of diagnosis experiments
 - Reflects infrastructure constraints
 - Information availability
 - Existing information already available
 - Information provided by each new experiment
 - Resource constraint
 - E.g., number of experiments to conduct (per hour), number of monitors available
- Output: A diagnosis experimental plan
 - A subset of experiments to conduct
 - Configuration of various control parameters
 - E.g., frequency, duration, sampling ratio, ...

Example: Network Benchmarking

- 1000s of virtual networks over the same physical network
- Wants to summarize the performance of each virtual net
 - E.g. traffic-weighted average of individual virtual path performance (loss, delay, jitter, ...)
 - Similar problem exists for monitoring per-application/customer performance
 - Challenge: Cannot afford to monitor all individual virtual paths
 - N² explosion times 1000s of virtual nets
- Solution: monitor a subset of virtual paths and infer the rest
- Q: which subset of virtual paths to monitor?

Example: Client-based Diagnosis

- Clients probe each other
- Use tomography/inference to localize trouble spot
 - E.g. links/regions with high loss rate, delay jitter, etc.
- Challenge: Pair-wise probing too expensive due to N² explosion
- Solution: monitor a subset of paths and infer the link performance
- Q: which subset of paths to probe?

More Examples

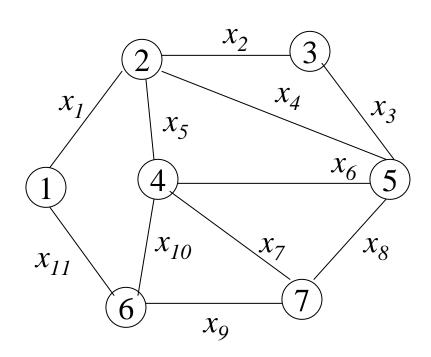
- Wireless sniffer placement
 - Input:
 - A set of locations to place wireless sniffers
 - Not all locations possible some people hate to be surrounded by sniffers
 - Monitoring quality at each candidate location
 - E.g. probabilities for capturing packets from different APs
 - Expected workload of different APs
 - Locations of existing sniffers
 - Output:
 - K additional locations for placing sniffers
- Cross-layer diagnosis
 - Infer layer-2 properties based on layer-3 performance
 - Which subset of layer-3 paths to probe?

Beyond Networking

- Software debugging
 - Select a given number of tests to maximize the coverage of corner cases
- Car crash test
 - Crash a given number of cars to find a maximal number of defects
- Medicine design
 - Conducting a given number of tests to maximize the chance of finding an effective ingredient
- Many more ...

Need Common Solution Framework

- Can we have a framework that solves them all?
 - As opposed to ad hoc solutions for individual problems
- Key requirements:
 - Scalable: work for large networks (e.g. 10000 nodes)
 - Flexible: accommodate different applications
 - Differentiated design
 - Different quantities have different importance, e.g., a subset of paths belong to a major customer
 - Augmented design
 - Conduct additional experiments given existing observations, e.g., after measurement failures
 - Multi-user design
 - Multiple users interested in different parts of network or have different objective functions


NetQuest

- A baby step towards such a framework
 - "NetQuest: A flexible framework for large-scale network measurement", Han Hee Song, Lili Qiu and Yin Zhang. ACM SIGMETRICS 2006.
- Achieves scalability and flexibility by combining
 - Bayesian experimental design
 - Statistical inference
- Developed in the context of e2e performance monitoring
- Can extend to other network monitoring/ diagnosis problems

What We Want

A function f(x) of link performance x

- We use a linear function $f(x)=F^*x$ in this talk

Ex. 1: average link delay f(x) = (x1+...+x11)/11

Ex. 2: end-to-end delays

	1	0	••••	0	$\begin{bmatrix} x_1 \end{bmatrix}$
f(x) =	1	1	0	0	<i>x</i> ₂
J(x) -	•	•	•	•	:
	0	•••	0	1	$\begin{bmatrix} x_{11} \end{bmatrix}$

Apply to any additive metric, eg. Log (1 - loss rate)

Problem Formulation

What we can measure: e2e performance

Network performance estimation

- Goal: e2e performance on some paths \rightarrow f(x)
- Design of experiments
 - Select a subset of paths S to probe such that we can estimate f(x) based on the observed performance y_S , A_S , and $y_S = A_S x$
- Network inference
 - Given e2e performance, infer link performance
 - Infer x based on y=F*x, y, and F

Design of Experiments

- State of the art
 - Probe every path (e.g., RON)
 - Not scalable since # paths grow quadratically with #nodes
 - Rank-based approach [sigcomm04]
 - Let A denote routing matrix
 - Monitor rank(A) paths that are linearly independent to exactly reconstruct end-to-end path properties
 - Still very expensive
- Select a "best" subset of paths to probe so that we can accurately infer f(x)
- How to quantify goodness of a subset of paths?

Bayesian Experimental Design

- A good design maximizes the expected utility under the optimal inference algorithm
- Different utility functions yield different design criteria
 - Let $D(\eta) = (A_s^T A_s + R)^{-1}$, where $\sigma^2 R^{-1}$ is covariance matrix of x
 - Bayesian A-optimality
 - Goal: minimize the squared error $||Fx Fx_S||_2^2$ $\phi_A(\eta) = \operatorname{trace} \{FD(\eta)F^T\}$
 - Bayesian D-optimality
 - Goal: maximize the expected gain in Shannon information $\phi_D(\eta) = \det\{FD(\eta)F^T\}$

Search Algorithm

- Given a design criterion $\phi(\eta)$, next step is to find s rows of A to optimize $\phi(\eta)$
 - This problem is NP-hard
 - We use a sequential search algorithm to greedily select the row that results in the largest improvement in $\phi(\eta)$
 - Better search algorithms?

Flexibility

Differentiated design

- Give higher weights to the important rows of matrix F

Augmented design

 Ensure the newly selected paths in conjunction with previously monitored paths maximize the utility

Multi-user design

- New design criteria: a linear combination of different users' design criteria

Network Inference

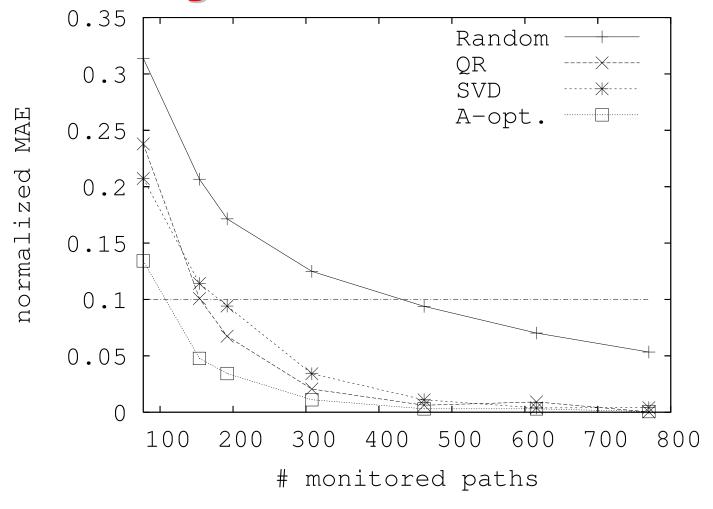
Goal: find x s.t. Y=Ax Main challenge: under-constrained problem L2-norm minimization

 $\min \lambda^2 \| x - \mu \|_2 + \| y - Ax \|_2^2$

L1-norm minimization

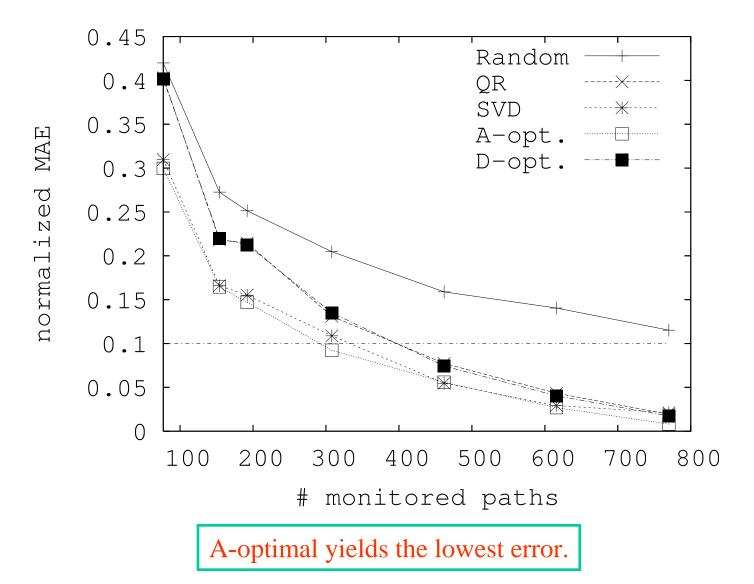
 $\min \lambda \| x - \mu \|_{1} + \| y - Ax \|_{1}$

Maximum entropy estimation $\min \sum_{i} x_i \log_2 \frac{x_i}{\mu_i} + ||y - Ax||_2^2$

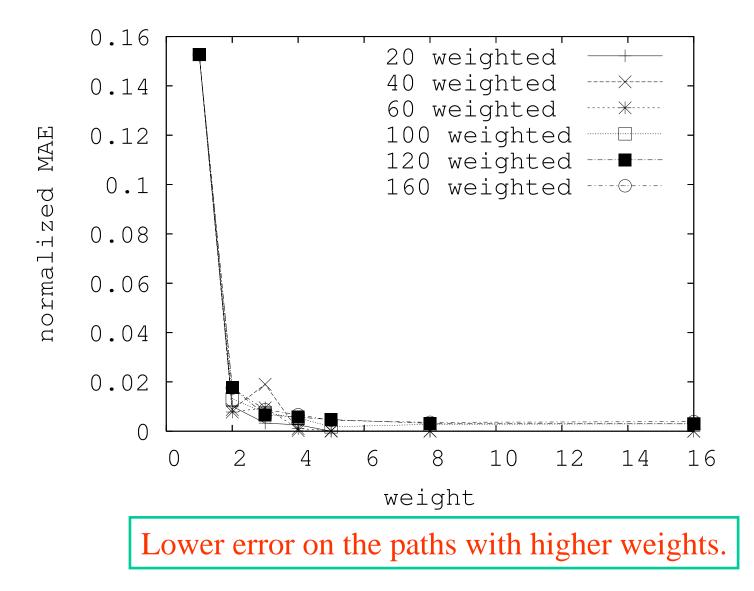

Evaluation Methodology

Data sets

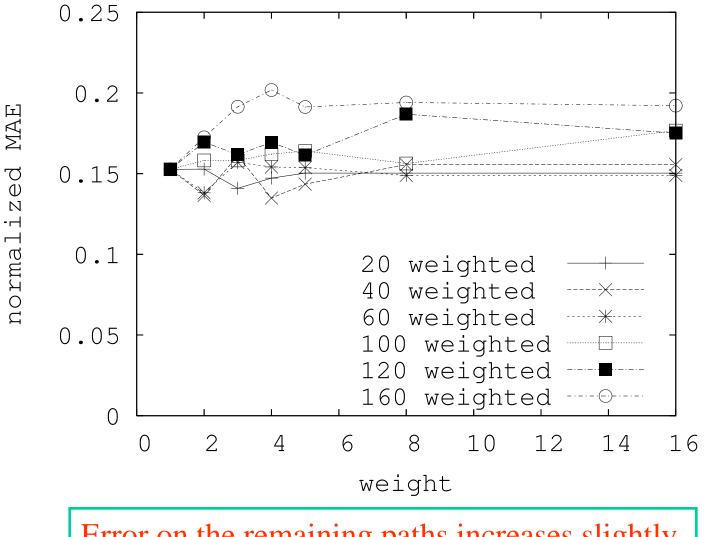
	# nodes	# overlay nodes	# paths	# links	Rank
PlanetLab-RTT	2514	61	3657	5467	769
Planetlab-loss	1795	60	3270	4628	690
Brite-n1000-o200	1000	200	39800	2883	2051
Brite-n5000-0600	5000	600	359400	14698	9729


Accuracy metric normalized $MAE = \frac{\sum_{i} |infer_{i} - actual_{i}|}{\sum_{i} actual_{i}}$

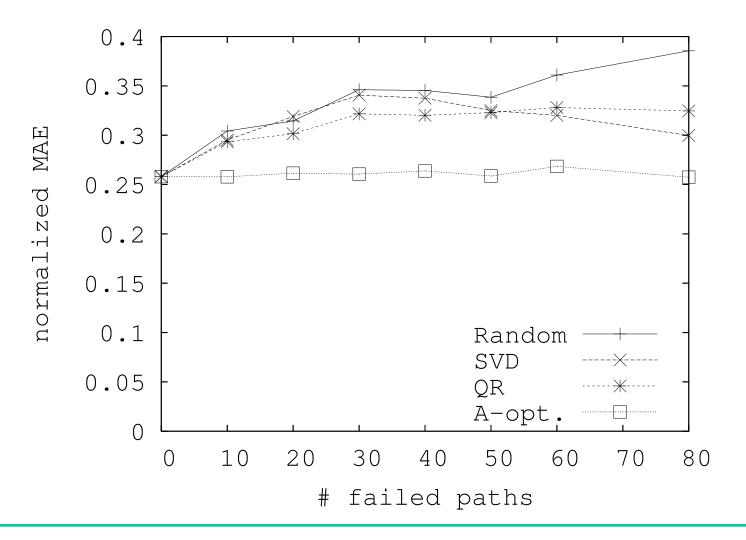
Comparison of DOE Algorithms: Estimating Network-Wide Mean RTT



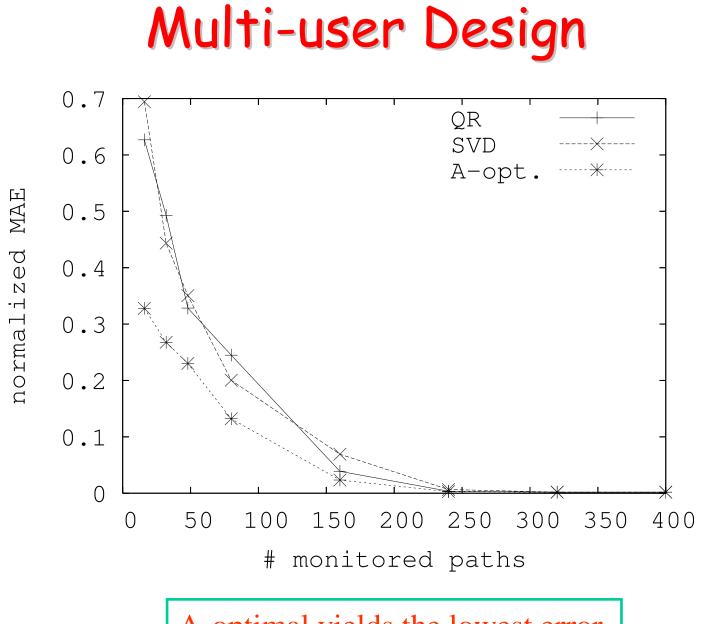
A-optimal yields the lowest error.


Comparison of DOE Algorithms: Estimating Per-Path RTT

Differentiated Design: Inference Error on Preferred Paths



Differentiated Design: Inference Error on the Remaining Paths



Error on the remaining paths increases slightly.

Augmented Design

A-optimal is most effective in augmenting an existing design.

A-optimal yields the lowest error.

Summary

Our contributions

- Bring Bayesian experimental design to network measurement and diagnosis
- Develop a flexible framework to accommodate different design requirements
- Experimentally show its effectiveness

Future work

- Making measurement design fault tolerant
- Applying our technique to other diagnosis problems
- Extend our framework to incorporate additional design constraints

Thank you!