Modular Maximum Likelihood Inverse Reinforcement Learning

Shun Zhang, Ruohan Zhang, Matthew H. Tong, Mary H. Hayhoe and Dana H. Ballard

The University of Texas at Austin

>

Modular Inverse Reinforcement Learning

[ Explaining human navigation behaviors under inverse reinforcement

learning (IRL) framework, i.e., estimating task rewards and discount factors.
J Assume that human has an internal “value surface”.

J Decompose human value function into local basis functions.

J The modular approach to IRL: sample efficiency
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[ The inverse reinforcement learning problem: given the environment, and

observed human trajectory, solve for reward and discount factors of object
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classes:
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[ The probability of taken a certain action is proportional to its normalized

value among all actions
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J The Q value can be calculated by summing the local basis functions

J Maximize the log likelihood of observed trajectory, and impose a sparsity

constraint on reward weights — humans can not pay attention to all the
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[ The objects in the environment affect the curvature of the value surface:
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/ Results

d Sanity Check: 2D Car Driving
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J Human navigation task in virtual reality

J Three modules: following the path, avoid obstacle, and collect targets
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(c) Path + Target
r: [.395, .098, .506]
v: [.189, .100, .407]

(d) Path + Target + Obstacle
r: [.312, .180, .508]
~v: [.148, .100, .570]

Conclusions

1 In sanity check, modular IRL is able to estimate rewards and discount

factors accurately, given enough data.
[ The data efficiency of modular IRL outperforms standard Bayesian IRL.

d In human experiments, the recovered reward s match well with the task

instructions, and reveal module priorities.

 Individual difference in rewards and discount factors.
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