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This document provides additional information about the experimental set-
tings as well as qualitative and quantitative results to support the experiments
from the main paper. Below is a summary of the sections in the supplementary
file:

S1 Noise-free exploration results

As noted in the main paper, we evaluate on both noisy and noise-free conditions.
We showed the change in map accuracy as a function of episode steps and area
seen under noisy conditions in Fig. 6 in the main paper. We show the same re-
sults on noise-free conditions here in Fig. Similar to the noisy case, OccAnt
approach (solid lines) rapidly leads to higher map accuracy when compared to
the baselines (dotted lines). However, we can see that adding the anticipation
reward (AR) in this noise-free setting does not lead to improvements in perfor-
mance in contrast to what was observed for the more realistic noisy setup (Fig.
5 in main).

As we will qualitatively demonstrate in Sec.[S4] the main benefit of using the
anticipation reward is that it leads to better noise correction in the pose estimates
under noisy test conditions, resulting in more effective map registration. This
is due to the fact that achieving high AR (i.e., the map accuracy) inherently
depends on better map registration. If the per-frame maps are not registered
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correctly, AR is likely to be low even if the per-frame map estimates are very
good. Therefore, in addition to covering more area, the agent also has to better
train the pose estimator which would then lead to higher AR over time. Since
noise correction is not needed under noise-free conditions, using AR has limited
impact on the final performance.
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Fig. S1: Noise-free exploration results: Map accuracy (m?) as a function of episode
duration (top row) and area seen (bottom row) for Gibson (small and large splits) and
Matterport3D under noise-free conditions. Top: Our OccAnt approach (solid lines)
rapidly attains higher map accuracy than the baselines (dotted lines). Using anticipa-
tion reward (AR) largely retains the original performance in the noise-free conditions
(but improves significantly in the noisy conditions, see Fig. 5 main paper). Bottom:
OccAnt achieves higher map accuracy for the same area covered (we show best variants
here to avoid clutter). These results show the agent actively moves better to explore
the environment with our occupancy anticipation idea.

S2 Occupancy anticipation ablation study

As discussed in the main paper, our key contributions are a novel framework
for occupancy anticipation and a novel anticipation reward which encourages
the agent to build more accurate maps (as opposed to covering more area). To
isolate the gains achieved by these individual contributions, we view the results
from the main paper (Tables 1, 2, and 3 in main paper) in a different way. We
first group the results based on the modality (rgb/depth/rgbd), and further sort
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the methods based on whether they use occupancy anticipation (OccAnt) or
the anticipation reward (AR). We present these ablations for the per-frame map
evaluation (Table[ST), the exploration evaluation (Table[S2), and the navigation
evaluation (Table [S3). By default, the ANS baselines do not use occupancy
anticipation or the anticipation reward and our methods always use occupancy
anticipation.

For per-frame maps, in Table [S1] we see that adding occupancy anticipation
to the base model significantly improves the IoU and F1 scores as expected.
Adding the anticipation reward leads to comparable or better results, showing
that it leads to better training of the mapper during the exploration training.

For exploration, in Table [S2| we see that adding occupancy anticipation gen-
erally leads to better map quality than ANS across different modalities and
testing conditions. Adding the anticipation reward (AR) leads to significant im-
provements in the map quality under noisy conditions for both depth and rgbd
modalities (rgb slightly underperforms). This is primarily due to improved train-
ing of the mapper module which leads to better map registration (see Sec. .
As we also noted in Sec. [S1} using AR in noise-free conditions has limited im-
pact on the performance as the pose-estimation is assumed to be perfect in these
cases. It mainly benefits exploration in the more real-world testing scenarios with
noisy actuation and sensing.

For navigation, in Table [53| we see that adding occupancy anticipation leads
to significant improvements in all three metrics. The impact of using AR here
is limited because we assume noise-free test conditions for PointNav (follow-
ing [712]). However, the challenge results reported in the main paper remove this
assumption to test PointNav with noisy odometry and actuation.

S3 Occupancy anticipation qualitative examples

See Figs. [S2] and [S3] for some successful cases and failure cases for our best
method from Table [SI| when compared with the baselines.

S4 Exploration with occupancy anticipation examples

In Table 2 and Fig. 6 from the main paper, and Table [S2|in this supplementary,
we see that adding occupancy anticipation on top of the ANS baseline leads
to better performance, and adding anticipation reward (AR) leads to better
mapping in the noisy cases.

Here, we highlight some example episodes to show that (1) using occupancy
anticipation avoids local navigation difficulties and obtains higher map qualities
for lower area coverage (Fig.[S4)), while sometimes being susceptible to inaccura-
cies in map predictions (Fig. , and (2) the anticipation reward leads to better
map registration (i.e., good pose estimates) which results in higher map quality
(Fig.[S6). The color scheme for the trajectories (from [7]) and the predicted maps
in the center (from [2]) are indicated below each plot.



4 S. Ramakrishnan et al.

RGB ANS(rgb) ~ ANS(depth)  View-extrap. OccAnt(rgbd) GT

olal

§ .
B Occupied [EFree [JUnknown

Fig.S2: Occupancy anticipation successful cases: ANS(rgb) is trained to predict
the visible occupancy (2nd column) and ANS(depth) (3rd column) directly uses the
visible occupancy (within a 3m range). Both these methods are unable to account
for regions that are not visible or outside the sensing range. While View-extrap (4th
column) is able to expand beyond a 90° FoV, its predictions are often noisy and do
not include occluded regions. Also, the predictions are not guaranteed to be smooth in
the top-down projection as smoothness in the depth-image prediction space does not
necessarily lead to smoothness in the top-down maps, resulting in speckled outputs.
Our method OccAnt(rgbd) (5th column) is able to successfully anticipate occupancy
for regions that are occluded and outside the field-of-view with high accuracy (see
ground-truth in column 6).
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Fig. S3: Occupancy anticipation failure cases: Our approach OccAnt(rgbd) in-
correctly predicts narrow corridors as occupied, and is unable to handle cases where
multiple solutions may exist. For example, in rows 2, 5 and 8, it predicts that the
corridors in the center of the map are blocked. In row 1, it predicts that the two doors
correspond to the same room, even though the wall colors are different and it is unlikely
that a small room would have two doors. In row 3, 4 and 6, it predicts entrances to
spaces that do not exist. Such predictions are generally difficult to make given only the
context of the current first-person view, and therefore our model tends to fail at these
cases.



6 S. Ramakrishnan et al.

OccAnt(depth) w/o AR ANS(depth)

:

B

Map prediction color scheme
Correct predictions Incorrect predictions
[ | Occupied [ Occupied [ ]Unknown
|:| Free |:| Free

Fig. S4: We enumerate some of the key advantages of exploration using occupancy
anticipation by comparing OccAnt(depth) w/o AR with ANS(depth) in Gibson under
noise-free conditions. The exploration trajectories and the map created during explo-
ration are shown at the extremes and the center, respectively. ‘ANS(depth) tends to
achieve worse exploration in some cases where the visible occupancy is incorrectly es-
timated (top 3 rows), causing the agent to get stuck in local regions. In other cases,
the map accuracy is generally higher for OccAnt(depth) w/o AR for similar amounts
of area seen (bottom 3 rows) as it is better at filling up the occupancy for unvisited
regions.
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Fig. S5: We highlight one key weakness of exploration using occupancy anticipation,
which is the impact of classification errors in occupancy estimates. We compare Oc-
cAnt(depth) w/o AR with ANS(depth) in Gibson. In some cases, OccAnt(depth) w/o
AR tends to generate false negatives for occupied regions, classifying some of the ex-
plored obstacles as free-space (gray regions in the first 3 rows, 2nd column). While
this does not impact the area seen, it does reduce the map quality. On the flip side,
OccAnt(depth) w/o AR may prematurely classify some narrow corridors as blocked
(similar to Fig. causing the agent to stop exploring beyond that corridor (light
green regions in last two rows, 2nd column).
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Fig. S6: The impact of using anticipation reward: In Table 6 from the main paper
and Table in Supp., we could see that models using anticipation reward generally
leads to higher map qualities in noisy test conditions. Here, we show that, when the
model that uses the anticipation reward (OccAnt(depth) on the left) accounts much
better for the noise in map registration when compared to a vanilla anticipation model
that does not use it (OccAnt(depth) w/o AR on the right).
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Method ToU % F1 score %
OccAnt AR free occ. mean free occe. mean
ANS(rgb) X X 12.1 14.9 13.5 19.6 24.9 22.5
OccAnt(rgb) w/o AR X 44.6 47.9 46.2 58.4 62.9 60.6
OccAnt(rgb) 444 479 461 582  62.9  60.6
ANS(depth) X X 145 241 193 231 376 304
OccAnt(depth) w/o AR X 50.3 61.7 56.0 63.8 74.9 69.3
OccAnt(depth) 50.4 61.9 56.1 63.8 75.0 69.4
OccAnt(rgbd) w/o AR X 50.1 60.5 55.3 63.6 74.1 68.8
OccAnt(rghd) 51.5 61.5 56.5 64.9 74.8 69.8

Table S1: Per-frame occupancy anticipation ablation study

Noisy test conditions

Gibson small Gibson large Matterport3D
Method OccAnt AR Map acc. IoU % Map acc. IoU % Map acc. IoU %
ANS(rgb) [ X X 1846 55 34.95 47 44.70 18
OccAnt(rgb) w/o AR X 21.77 66 44.15 57 65.76 23
OccAnt(rgb) 20.87 62 42.08 54 66.15 22
ANS(depth) X X 18.54 56 39.35 53 72.48 26
OccAnt(depth) w/o AR X 20.22 58 44.18 54 92.70 29
OccAnt(depth) 22.74 71 50.30 67 94.12 33
OccAnt(rghd) w/o AR X 16.92 45 35.60 40 76.32 23
OccAnt(rgbd) 22.70 71 48.42 62 99.92 32

Noise-free test conditions

Gibson small Gibson large Matterport3D
Method OccAnt AR Map ace. IoU % Map acc. IoU % Map acc. IoU %
ANS(rgb) [2] X X 2243 76 43.41 64 53.40 23
OccAnt(rgb) w/o AR X 22.60 71 45.19 60 64.44 24
OccAnt(rgb) 22.32 70 43.52 58 64.35 22
ANS(depth) X X 21.39 74 48.01 72 85.91 34
OccAnt(depth) w/o AR X 24.91 84 54.05 75 104.68 38
OccAnt(depth) 24.80 83 53.08 74 96.45 35
OccAnt(rgbd) w/o AR X 24.80 84 51.99 71 98.70 34
OccAnt(rgbd) 24.51 82 50.97 69 100.25 34

Table S2: Timed exploration ablation: Map quality at T=500 for all models and
datasets.

Method OccAnt AR SPL % Success Rate % Time taken
ANS(rgb) [2] x X 668 87.9 254.109
OccAnt(rgb) w/o AR X 712 88.2 223.411
OccAnt(rgb) 66.1 81.3 293.321
ANS(depth) X X 76.8 86.6 226.161
OccAnt(depth) w/o AR X 78.6 92.2 187.358
OccAnt(depth) 77.8 91.3 194.751
OccAnt(rgbd) w/o AR X 779 92.9 174.105
OccAnt(rgbd) 80.0 93.0 171.874

Table S3: PointGoal navigation ablation: Time taken refers to the average number
of agent actions required; the maximum time budget is T'=1000.
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S5 Generating ground-truth for occupancy anticipation
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Fig.S7: Pipeline for generating anticipation ground-truth.

Full occupancy

Ground-truth

Using 3D meshes of indoor environments from Gibson and Matterport3D, we
obtain the ground-truth local occupancy of a V' x V region in front of the camera
which includes parts that may be occluded or outside the field-of-view (see Fig.2
from main paper). However, this may include regions in the environment that
are outside the bounds of the environment’s mesh. To alleviate this problem,
we devise a simple heuristic that generates the ground truth by masking out
regions in the occupancy map that are outside the bounds of the environment
(highlighted in Fig. .

We first obtain the visible occupancy via a geometric projection of the depth
inputs (2nd column). We then selectively sample the ground-truth layout (last
column) around the visible regions by growing a mask around the visible oc-
cupancy by sequential hole-filling and morphological dilation operations. We
perform two iterations of this region growing to obtain the final ground-truth
used to train our model (3rd & 4th columns). This heuristic captures the oc-
cupied regions that are closer to navigable space in the environment (likely to
be objects, walls, etc), while ignoring regions outside the bounds of the envi-
ronment. This is necessary since the occupancy map from the simulator does
not distinguish between obstacles and regions outside the bounds of the envi-
ronment mesh. Note that these steps apply only in training; during inference the
occupancy anticipation proceeds solely in the end-to-end model.

S6 Noise models for actuation and odometry

Following [2], we simulate realistic actuation and odometry to train and evaluate
our exploration agents. For this purpose, we use the PyRobot actuation model
provided by Habitat which consists of truncated Gaussians for both the rotation
and translation motionsﬂ Specifically, we use the default LoCoBot noise-model
with the ILQR controller. For simulating noise in the odometry, we similarly use

3 lhttps://github.com/facebookresearch/habitat-sim/habitat_sim/agent/controls/pyrobot_noisy_
controls.py
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truncated Gaussians for both rotation and translation measurements. For the
translation measurement, we use a mean of 0.025m and a standard deviation
of 0.001 For the rotation measurement, we use a mean of 0.9° and standard
deviation of 0.057°. The distributions are truncated at 2 standard deviations.
These are based on approximate values provided by the authors of ANS.

S7 Differences in ANS implementation

We implemented the ANS approach using the published details in [2] and in-
structions obtained directly from the authors via private communication as code
was not publicly available at the time of our research. Our implementation has
a few differences from that in [2], which we discuss in the following. For shortest
path planning, we use an A* planner instead of fast-marching [I1] used in [2]
since we were able to find a fast A* implementation that was publicly availableﬁ

For aggregating the local occupancy maps p; from each observatiorﬂ into the
global map m;_; from the previous time-step , the authors in [2] use channelwise
max-pooling of the local and global maps to obtain the updated global map ;.

my = ChannelwiseMax(mtflaﬁt) (1)

Instead, we opt to perform a moving-average over time to allow the agent to
account for errors in the map prediction by averaging predictions from multiple
views over time.

mt = aemtfl + (1 - ae)ﬁt (2)

We found that this provided robustness to false positives in the map predictions
and registration errors due to odometry noise.

Additionally, since our proposed model anticipates occupancy beyond the
visible regions, we found that it is helpful to filter out low-confidence predictions
of occupancy on a per-frame basis using the EntropyFilter () operation. Given
prediction p;, EntropyFilter() masks out the predictions for locations i,j in
pr where the binary-entropy of the probabilities across the map channels are
larger than a threshold 7.,; before performing the moving-average aggregation.
These low-confidence predictions generally correspond to regions that are hard
to anticipate or may have multiple solutions. Hence, our global map update
formula is:

My = aeMy—1 + (1 — e )EntropyFilter(py). (3)

4 A* implementation: https://github.com/hjweide/a-star
5 p; is the local map at t registered to the global coordinates using the agent’s pose estimate.
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S8 Implementation details

The key hyperparameters for learning the policy and mapper are specified in
Table

Policy learning

Optimizer Adam [6]
# processes 24
Learning rate 0.00025
Value loss coef 0.5
Entropy coef 0.001
Discount factor v 0.99
GAE 7 0.95
Episode length 1000

# training frames 1.5-2 million
PPO clipping 0.2

PPO epochs 4

# PPO minibatches 16
Global policy A 25

Global policy update interval 20
Global policy reward scaling 0.0001
Local policy reward scaling 1.0
Local policy update interval 25

Mapper learning

Optimizer Adam [6]
Learning rate 0.0001
Replay buffer size 25000
Mapper update interval 5
Mapper batch size 32
Mapper update batches 20

Map scale 0.05m
Local map size (V) 101
Global map size (G) 961
Aggregation factor (a.) 0.9

Table S4: Policy and mapper hyperparameters used to train our models

S9 Occupancy anticipation architecture

The architecture diagrams for the individual components of our occupancy an-
ticipation model (Fig. 2 in main paper) are shown in Figs. and
with a brief description of the role of each module. We follow the PyTorch [10]
conventions to describe individual layers, with the tensor shapes represented in
(C, H, W) notations. The descriptions for individual layers are:
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— ConvBR: a combination of nn.Conv2d, nn.BatchNorm2d and nn.ReLU layers
with the arguments representing the input channels, output channels, kernel
size, stride and padding.

— MaxPool: an instantiation of the nn.MaxPool2d layer with the arguments
representing the kernel size, stride and padding.

— Conv: ann.Conv2d layer with the arguments representing the input channels,
output channels, kernel size, stride and padding.

— AvgPool: an instantiation of the nn.AvgPool2d layer with the arguments
representing the kernel size, stride and padding.

— 2x Upsample: an instantiation of the nn.Upsample layer with a scaling factor
of 2.
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Fig.S8: RGB CNN features: extracts features from RGB images using ResNet18
blocks, and further processes the features to obtain compatible RGB features in a
top-down view.

S10 ANS projection unit architecture

The projection unit architecture for the ANS(rgb) baseline is shown in Fig. [S12
This is based on the architecture in [2] with some minor differences. It uses
nn.BatchNorm + nn.ReLU blocks instead of nn.Dropout in the fully connected
layers, it has a larger convolutional decoder to account for our larger map
outputs, and it consists of nn.Conv2d + nn.Upsample layers instead of than
nn.ConvTranspose2D layers as this has been shown to reduce checkerboard ar-
tifacts [9].

S11 View extrapolation baseline

We now provide more details on the task-defintion and architecture for the
View-extrap. baseline introduced in Sec. 4.1 in the main paper. The goal is
to extrapolate 180° FoV depth from 90° FoV RGB-D inputs in order to evaluate
the performance of scene completion approaches [I2J14]. Since Habitat [7] does
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Feature Encoding
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Fig.S9: Feature encoding: The RGB features and visible occupancy are encoded
using independent UNet encoding layers. The expanded view of the “InConv” and
“Down” blocks are shown on the right. The encoded RGB and visible occupancy fea-
tures at different levels are fi.5 and f5, respectively.
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Fig. S10: MERGE: combines the RGB (f%,5) and visible occupancy (f1 : 5%) features
obtained from Feature encoding layers in a layerwise fashion to obtain a set of merged
features f = f1.5. Since the RGB features are not available at levels 1 and 2, it sim-
ply uses the visible occupancy features for those levels. The expanded view of the
“Merge, (F)” block is shown on the right.

not natively support panoramic rendering, we use a simpler solution to account
for this. We place two cameras with +45° heading offsets and aim to regress
those from the egocentric view (see Fig.[S13)). Since each camera has a 90° FoV,
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Fig. S11: Anticipation Decoder: a typical UNet decoder that takes features provided
by MERGE (f = fi:5) and decodes them using residual connections to obtain the
anticipated occupancy map p. The expanded view of the “Up” block is shown on the
right.
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Fig.S12: ANS projection unit: ResNet-18 features are extracted, followed by two
fully connected layers (represented by 1 X 1 convolutions) and a convolutional decoder
that uses “Upsample” blocks to increase the output resolution and predict the occu-
pancy estimates p. Note that this is supervised to predict the visible occupancy map,
not the anticipated occupancy map (see Fig. 1 in main paper).

this leads to an effective coverage of 180° once the agent anticipates the unob-
served portions. We base our architecture for view extrapolation on the model
from [I4] with a capacity similar to our model to permit online training during
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policy learning (see Fig. |S14)). It takes as input the 90° FoV RGB-D images and
regresses the left and right cameras. It is trained to minimize the pixelwise ¢,
loss between the prediction and the ground-truth.

Camera poses @

I
| Prediction Ground Truth

Fig. S13: View extrapolation task: Given the agent’s egocentric RGB-D input, we
predict the depth-map for two additional depth-sensors placed at 45° angles to the
left (purple) and right (green) of the central input (orange). These are geometrically
projected to the top-down view to obtain the occupancy estimates.
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Fig.S14: View extrapolation architecture [14]: The 90° FoV RGB and depth
inputs are independently encoded using Convolutional layers, concatenated and pro-
cessed using a UNet model. The decoded features from UNet are used to extrapolate
the final depth predictions. “DeconvBLr” uses nn.ConvTranspose2D to perform the
upsampling. Note that “ConvBLr” and “DeconvBLr” use nn.LeakyReLU(0.1) instead
of “nn.ReLU()”.
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S12 Comparing the model capacities of different methods

We compare the overall model capacity of our approaches with the baselines in
Table The depth-only models (bottom 2 rows) tend to have fewer parame-
ters than the rgb-only models as they rely on geometric projection for processing
depth (no ResNet backbone). Our depth model has comparable number of pa-
rameters with the depth-only baselines. Our rgb model has slightly more param-
eters than the rgb baseline. However, this is due to the fact that OccAnt(rgb)
takes the output of ANS(rgb) as an additional input. However, since ANS(rgb)
is kept frozen throughout the training of OccAnt(rgb), this effectively gives us
5.7M trainable parameters.

Method Parameters (in millions)
ANS(rgb) 14.16
OccAnt(rgb) 19.86
ANS(depth) 0.87
OccAnt(depth) 1.72

Table S5: Comparing model capacity of different approaches

Anticipated GT
occupancy occupancy

RGB Depth

Fig.S15: Qualitative results from the 2020 Habitat Challenge: On the left, we
show the noisy RGB and depth inputs. On the right, we show the corresponding
anticipated and ground-truth occupancy. Our model learns to anticipate accu-
rately in the presence of noise.



18 S. Ramakrishnan et al.
S13 Habitat Challenge 2020

We detail the key issues we had to address for the PointNav track of Habitat
Challenge 2020 [I] and the changes to our system required to achieve our state-
of-the-art results. Compared to the 2019 Habitat Challenge, there were two key
changes that increased the task difficulty:

Lack of GPS+Compass sensor: The presence of the GPS+Compass sensor used
in earlier challenges continually provides the agent with a perfect estimate of
the position and heading angle of the goal relative to its current position. Such
perfect localization has been exploited in the past by purely geometric [4] and
learned [13] approaches to achieve high-quality PointNav performance. However,
such high precision localization is hard to achieve in practice. The 2020 challenge
instead requires navigation in the absence of the GPS+Compass sensor. Instead,
the goal location is only specified initially at the start of the episode, requiring the
agent to accurately keep track of its position in the environment to successfully
reach the goal.

Noisy actuation and sensing: In the 2020 challenge, RGB-D sensing noise is
simulated artificially by using a Gaussian noise-model for the RGB sensor and
the Redwood noise model [3] for the depth sensor. Additionally, actuation noise
in the robot motions is simulated by using a noise model obtained from the
LoCoBot [§].

We adapted our model in several ways to address these challenges. To address
the lack of GPS+Compass sensor, we used an online pose estimator that uses
RGB-D inputs x; and x;y1 to estimate the relative change in the pose Ap;1.
These pose changes are summed up over time to track the agent’s pose p;y1.
When compared to the original ANS model, we found that using RGB-D in-
puts gave slightly better estimates and was more computationally efficient than
using top-down maps. The pose estimator consists of a 6 convolutional layers
followed by 3 fully-connected layers to predict the pose for each modality (RGB,
depth) independently. The predictions are combined by using input-conditioned
weighting factors that are estimated using a learned MLP with 4 fully-connected
layers.

To handle noisy sensing, we train our occupancy anticipation model end-
to-end on the noisy inputs, which gave accurate predictions (see Fig. . We
found that OccAnt(depth) gave the best performance, and that adding RGB
information to occupancy anticipation did not lead to significant changes in
performance.

To deal with noisy actuation, we found that the learned pose estimator gave
robust estimates of the agent position. Despite having this pose estimator, we
experienced large drifts in the estimate over time due to high variance in the ac-
tuation noise. To partially mitigate this issue, we focused on efficient navigation
with safe planning that maintains sufficient distance from obstacles while plan-
ning shortest paths. In practice, we found that reducing the number of collisions
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leads to faster navigation and lower drift in the pose estimates. We achieve this
by using a weighted variant of the classic A-star search algorithm [5]H
Additionally, we incorporated some simple heuristics from the original Active
Neural SLAM implementation to update the occupancy maps based on collisions,
and used an analytical local policy for navigation instead of a learned policy.
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