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Abstract— Estimation of action unit (AU) intensities is con-
sidered a challenging problem. AUs exhibit high variations
among the subjects due to the differences in facial plasticity
and morphology. In this paper, we propose a novel framework
to model the individual AUs using a hierarchical regression
model. Our approach can be seen as a combination of locally
linear Partial Least Squares (PLS) models where each one of
them learns the relation between visual features and the AU
intensity labels at different levels of details. It automatically
adapts to the non-linearity in the source domain by adjusting
the learned hierarchical structure. We evaluate our approach
on the benchmark of the Bosphorus dataset and show that the
proposed approach outperforms both the 2D state-of-the-art
and the plain PLS baseline models. The generalization to other
datasets is evaluated on the extended Cohn-Kanade dataset
(CK+), where our hierarchical model outperforms linear and
Gaussian kernel PLS.

I. INTRODUCTION

Analysis of facial expressions is becoming more impor-
tant, e.g. in order to adapt to the current state of the person
interacting with a computer-interface or in psychological
analysis [5]. For most applications, facial expression analysis
is reduced to the recognition of prototypic facial expressions
from emotions like happy, sad, angry, disgust, surprise, or
fear. While this simplifies the task of classification, it does
not provide recognition of the whole spectrum of emotional
facial expressions. Moreover, the prototypical expressions
rarely occur in their idealized form in real-life. Also, treating
these prototypic expressions equivalent to their emotional
origins is dangerous, since the expression can also originate
from a different affective state. For example, a smiling face
might originate from happiness, but also from frustration [2].
Therefore, in this work we concentrate on analyzing the
facial expression without interpreting its meaning in order to
lay the ground for later interpretation. The most commonly
used description scheme in this context is the Facial Action
Coding System (FACS) [3], which describes the facial ex-
pression in terms of Action Units (AU) on basis of the visual
effect of facial muscle activations. There are a lot of studies
proposing methods for automatically detecting the presence
of such AUs [23]. However, AUs don’t appear in a natural
scenario just with high activation or no at all, rather with
continuous intensity variations. Our focus in this work lies
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Fig. 1: Examples of face images that show variations in performing
the same AUs, either as a result of differences in face morphology
(first line) or recording settings (second line). (Best viewed in color)

on estimating the intensity of AUs in a continuous fashion,
even though the FACS manual [3] discretizes the intensities
into six classes, 0 and A to E, to ease human annotation.
This would also allow to analyze subtle expressions which
might not be detected if only the presence of AUs would be
classified.

AU intensity estimation is a field that has not received as
much attention as other fields of facial expression analysis.
Pantic and Rosenkrantz [12] developed an expert system
to recognize AU intensities on basis of detected facial
features. Bartlett et al. [1] showed that the distance to the
hyperplane of Support Vector Machines (SVM) trained for
AU detection is correlated with the actual AU intensity, when
using Gabor Wavelets as features. Most of the approaches
use variants of SVMs, like multi-class SVM [10], [21],
[22], [11] or Support Vector Regression (SVR) [17], [18],
[7]. Other machine learning approaches used are Relevant
Vector Regression [8], Gaussian Process Regression [6],
Markov Random Fields [15], Conditional Ordinal Random
Fields [14].

In general, such systems first extract some suitable face
representation, which is then used as input to some ma-
chine learning approach for estimating the AU intensities.
The relation between these low-level features and the AU
intensities is usually non-linear. This non-linearity comes
from different factors; some are related to the extracted visual
features and their robustness to changes in lighting, scale
and perspective among others, while others are related to the
dynamics of the AUs relative to subjects. Different people
exhibit significant differences in performing the various AUs.
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Fig. 2: Flow diagram of the feature extraction and AU intensity
estimation of our approach.

These differences are related to the varying face properties
which are caused by differences in gender (e.g. changes in
eyebrows), age (e.g. changes in skin and muscle structure),
and race (e.g. changes in shape) [20], as can be seen in
Fig. 1.

A prominent approach to model such non-linearity is by
using kernel models [18]. However, kernel models generally
require a notably higher computational cost in both time and
memory while at the same time tend to generalize poorly
for out of sample estimation. In this work, we propose to
model the non-linear relation with a set of linear sub-models.
Each of these takes advantage of the local linearity of a
subset of the problem space. This enables us to have an AU
model that is robust to the previous factors, i.e. subject and
recording settings variations, while at the same time maintain
an efficient and effective learning.

In this context, we introduce a novel hierarchical model
based on Partial Least Squares (PLS) [13]. Our model can
handle non-linearities in the data by utilizing combinations
of locally linear PLS sub-models, each of which is learned at
different levels of detail. Such sub-models are computation-
ally cheap to compute while at the same time they enable the
overall model to capture non-linearity in an efficient manner
compared to their kernel counterparts. The structure of the
model is learned automatically to adapt to the type of the
relation between each AU and the visual features.

II. APPROACH

The flow diagram for the utilized feature extraction and
AU intensity estimation of our approach is shown in Fig. 2.
In the following, we discuss each module with more details.

A. Feature Extraction

The feature extraction starts with aligning the face based
on the eyes and the center of the upper inner lip to reduce
variations in in-plane rotation, small out-of-plane rotations,
scaling, and person-specific face shapes. For the positions we
use the labels provided with the databases. The alignment is
performed such that the eyes and the upper lip always end
up on the same points in the aligned image, specified by
the eye row, eye distance and upper lip row. For this an
affine transformation is utilized. The resulting aligned face
image is then cropped and converted to grayscale for further
feature extraction using a Gabor filter bank. To reduce the di-
mensionality of the Gabor features we downscale the Gabor
filtered images and concatenate all the resulting features into
one feature vector. A power transform p(x) = xγ is applied

to each element of this feature vector to stabilize its variance
and make it more like a normal distribution. Finally, the
feature vector as well as the intensity labels are normalized to
be zero-mean and scaled to unit variance before performing
any training or estimation.

B. Partial Least Square Analysis

As a core regression model for AU estimation, we use
partial least squares as described by Rosipal [13]. This is
a general concept, which has been used a lot in the field
of chemometrics and also in the recent years in computer
vision. It relates input and output variables X and Y via an
intermediate latent space. This space is trained to maximize
the covariance between projections t and u from input and
output space into the latent space:

[cov(t,u)]2 = max
|r|=|s|=1

[cov(Xr,Ys)]2 (1)

This leads to a compact representation in the latent space and
higher weights for task relevant features via the supervised
PLS training. More details about the characteristics of the
PLS model can be found in [13].

To calculate the projection T from the input data X to the
latent space, we use the projection matrix W learned as part
of the PLS model:

T = XW (2)

The corresponding AU intensity fPLS(X) is estimated
using the learned regression matrix B:

fPLS(X) = XB (3)

In this work, we use the kernel PLS as a baseline and
compare results for linear and Gaussian radial basis function
(RBF) kernels:

klinear(xi,xj) = xTi xj (4)

kgaussian(xi,xj) = exp(−(|xi − xj |2)/w), (5)

C. Hierarchical Partial Least Squares

In the following, we present the proposed hierarchical
approach and its various steps: i) the identification and
learning of locally linear models; ii) model selection and
iii) model combination.

Model Hierarchy A key factor for the performance of
locally linear models is the methodology adopted to capture
and identify local linear subsets of the problem space. To
identify these subsets in the input-output space, we propose
to take advantage of the latent space learned by PLS as a cue.
As described in Section II-B, PLS maximizes the covariance
between the projections of the features and AU estimations
into the latent space. The non-linear relation between the
two spaces, features and AU intensities, is usually reflected
in the properties of the learned latent space. Fig. 3 shows
the latent space learned by PLS for AU4 (Brow Lowerer).
One can notice the existence of two distinct groups. The
clusters are not caused by changes in AU intensities, rather
they follow a clear split among the subjects. In this case, the
split is due to a sudden change in the lighting conditions of
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(a) AU4 latent space
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(b) AU4 intensities
−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t1

t2

 

 

(c) AU4 subjects
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(d) AU12 latent space

Fig. 3: The PLS learned latent space of action unit AU4 represented with the first two latent components (a). Figure (b) labels the latent
space with AU intensities while in (c) the subject labels are shown. Notice that the split between the samples in the latent space follows
a division among the subjects not the intensities. However, the same grouping does not appear in all AUs as seen in the latent space of
AU12 in (d). Best viewed in color.

the recorded samples. On the other hand, not all AUs seem
to follow a similar behavior. For example, while the lighting
changes have a high impact on AU4 it doesn’t have a similar
influence on AU12 (Lip Corner Puller), as shown in Fig. 3d.

Based on the previous observation, we propose to decom-
pose the input-output space following the grouping exposed
by the learned latent space of PLS in an iterative manner.
That is, first a global linear PLS model for a certain AU
is learned using all samples available. Then, samples are
projected to the latent space using (2). Latent scores are
clustered into S groups. If the clustering is good, the result
is mapped back to input (visual features) and output space
(AU intensities). For each subset {(Xi,Yi) : i = 1...S}, a
new PLS model is learned as in Section II-B. The procedure
is repeated as long as a good split in the latent space can be
detected (Algo. 1).

At the end of this step, a hierarchical PLS model (hPLS)
is learned. Where each node in the hierarchy is a locally
linear PLS model that captures the AU-feature relation at
a certain abstraction level. The root of the tree models the
global relation between X and Y while the subsequent nodes
model the finer details among the various subsets in the
dataset. Notice that the approach iteratively splits and learns
local models. Hence, the number of clusters S does not play
an important role and can be set to an arbitrarily low value
(e.g. S = 2, i.e. binary tree). That is, if a larger number of
clusters appears in the latent space, the model will probably
discover this in a later stage in the hierarchy.

Model Selection In order to evaluate the “goodness” of a
certain split, we need some kind of a quality measurement.
We adopt the corrected Akaike Information Criterion (AICc).
AICc measures the estimated relative loss of information
when a model is selected to describe the system that pro-
duced the data:

AICc = 2(k − ln(L)) + 2k(k+1)
n−k−1 , (6)

where k is the number of model parameters, n is the
number of samples and L is the maximized likelihood value.
Hence, to assess the quality of a certain split we check the
relative loss exhibited when adopting the split into S groups
compared to no split, i.e. :

exp((AICc0 −AICcS)/2) > θ. (7)

input : X, Y, (S=2)
output: model
PLSroot ← PLS fit(X,Y)
(model, root)← add to hierarchy([ ], PLSroot)
node list← push(root, node list)
while not is empty(node list) do

ni ← pop(node list)
ltni ← get latent space(Xni ,Yni , PLSni)
Cni
← cluster(ltni

, S)
if not is good(Cni

) then
continue

end
for j ← 1 to S do

idxj ← get cluster(j, Cni
)

PLSj ← PLS fit(Xni
(idxj),Yni

(idxj))
(model, nj)← add to hieararchy(ni, PLSj)
node list← push(nj , node list)

end
end

Algorithm 1: Hierarchical PLS.

Model Combination Once the hierarchical model is
learned, AU intensity estimations can be retrieved by com-
bining the models at different levels of the hierarchy. That
is, a new sample is projected into the latent space of the
root node in the tree and classified down to a leaf node nl.
All PLS models along the tree branch of the sample are
combined to get the average estimation of the AU:

fhPLS(x) = 1
|anc(nl)|

∑
nj∈anc(nl)

f
nj

PLS(x)

such that x ∈ nl,
(8)

where anc(n) is the set of ancestors of node n.
By combining the models through the hierarchy, we take

advantage of the characteristics of the models at each level.
The models towards the root are trained with larger subsets.
Hence, they provide a more stable (less sensitive to noise)
and general estimation of the AU intensities. On the other
hand, the models towards the leaves are trained with smaller
subsets and they provide a less stable but more accurate
estimation of the AU intensities.

Our approach has some nice properties. It automatically
adapts to the varying complexity of the relation between the



feature space and the AU intensity estimates for the different
AUs. It learns the appropriate structure to model this relation
by varying the tree width and depth. It is also a generic
model, i.e. any other regression model (e.g. CCA) can easily
replace the PLS in the hierarchy to have a novel model with
different properties.

III. EXPERIMENTS

To have a better understanding of the generalization prop-
erties of the various methods, we evaluate our approach using
two setups: within-dataset intensity estimation, i.e. training
and testing in the same dataset; and across-dataset intensity
estimation, i.e. training and testing conducted on disjoint
datasets. Furthermore, we will discuss the computational
efficiency of the proposed approach.

A. Datasets

For the within-dataset experiment, we chose the Bosphorus
dataset [16]. It contains 2902 images of 105 subjects with
a rich variety of acted expressions. The samples are labeled
with FACS AU intensities. The labels were provided by a
certified FACS coder. The subjects are mostly Caucasian
between 25 and 35 years with varying facial characteristics.

For the across-dataset experiment, we picked the Extended
Cohn-Kanade (CK+) dataset [9]. It contains 117 frames of
73 subjects labeled with 24 AU intensities. As Bosphorus,
this dataset is coded by a certified FACS coder.

B. Evaluation Setup

The evaluation is carried out following the official bench-
mark proposed by Savran et al. [18]. 25 AUs in the dataset
with all five intensity levels, i.e. excluding 0 intensity, are
evaluated separately where each AU has a predefined 10-
fold cross validation setup. Each fold is chosen such that
the subjects do not occur in multiple folds and the folds are
balanced in terms of the number of positive AU samples.

The performance in the official Bosphorus benchmark is
measured using the Pearson correlation coefficient (PCC)
between the estimated and the ground-truth AU intensities.
In addition to PCC, we use the Intraclass Correlation
Coefficient (ICC) [19] for determining the performance,
since it is said to be preferred over PCC when it comes
to computing the consistency between k judges [10]. The
reason for this is that labels and estimates are centered and
scaled by a common mean and standard deviation rather than
individually as for PCC. Finally, the weighted average of the
PCC and ICC results over the individual AUs are used as the
overall performances, where the weights are determined by
the number of AU samples.

For the feature extraction, we align eyes to be on row 37.5,
to have an interocular distance of 46.5 pixels, and the inner
upper lip center to lie on row 90. The Gabor features are
downscaled by a factor of 8, i.e. for each block of 8× 8 we
replace it by its average value. For the power transformation
we use γ = 0.25. The parameters for the various PLS
models are estimated using 5-fold cross-validation on the
corresponding training folds. We use one PLS model per AU

TABLE I: Average performance of AU intensity estimation in terms
of PCC and ICC evaluated using 10-fold cross-validation on the
official benchmark folds of Bosphorus.

Metric hPLS (ours) linear-PLS RBF-PLS AdaSVR [18]

PCC 61.7 59.6 60.5 57.6
ICC 57.9 57.3 56.0 -

due to the way the folds in the official benchmark for the
Bosphorus database are defined. But PLS can also estimate
all AUs at once [4].

C. Within-dataset AU intensity estimation

In the first evaluation, we compare the plain PLS baseline
and our proposed hierarchical PLS approach with the state-
of-the-art 2D method from Savran et al. [18]. Their ap-
proach uses Gabor magnitude features extracted from images
aligned based on the eyes position. From these features a
subset is selected by AdaBoost. The AU intensity estimation
is performed by an RBF support vector regression (ε-SVR).
From here on, we will refer to this approach as AdaSVR.

The weighted average PCC and ICC results over all AUs
for the hierarchical PLS, linear PLS, RBF kernel PLS, and
AdaSVR are shown in Table I. We notice that all our results
outperform AdaSVR. In initial experiments, we also evalu-
ated 2-point alignment as used by AdaSVR and found that,
while the plain PLS with linear and RBF kernels performed
as well as AdaSVR, our model (hPLS) achieves 59.7% PCC
outperforming all. In general, the 3-point alignment enhanced
the performance of the plain PLS baseline and our hPLS.
This is expected, since due to different face shapes the mouth
will be differently positioned for different persons in case
of sole eye-based alignment, whereas for 3-point alignment
the mouth will be positioned at roughly the same region for
different persons.

Additionally, the use of the RBF kernel improves over the
linear PLS by 0.9% absolute difference in PCC, but drops in
performance in terms of ICC by 1.3%. On the other hand,
RBF PLS takes much longer time to train due to the more
complex parameter estimation, whereas the hierarchical PLS
is much faster in training due to its locally linear concept.
hPLS improves over linear and RBF PLS in both PCC and
ICC. This shows that the hierarchical approach seems to
actually model the non-linearity even better than the RBF
PLS does, while keeping the complexity of training low.

When we look at the individual performances for the
various AUs in Fig. 5a, we notice that there are 18 AUs
where the hierarchical PLS performs better compared to just
8 AUs where the linear PLS works slightly better. For AUs,
such as 15 (Lip Corner Depressor) and 20 (Lip Stretch), the
hierarchical PLS gives a significant performance boost.

To get some insight in the structure of the proposed hPLS,
Fig. 4 shows the average number of locally linear models in
the learned hierarchy for each AU, while in Fig. 6 some of
the splits learned by hPLS at different levels and for various
AUs are presented.
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Fig. 5: The performance of the individual AUs in terms of PCC compared to the linear PLS model in both (a) Bosphorus and (b) CK+
datasets.
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Fig. 4: The average number of nodes in the learned hierarchy for
each AU in the Bosphorus dataset. Our model automatically adapts
to the complexity of each AU by varying the number of learned
locally linear submodels.

TABLE II: Average performance of AU intensity estimation in
terms of PCC and ICC for across-dataset evaluation, i.e. training
on Bosphorus and testing on CK+.

Metric hPLS (ours) linear-PLS RBF-PLS

PCC 44.9 37.0 41.2
ICC 41.2 35.8 26.2

D. Across-dataset AU intensity estimation

To demonstrate the generalization ability of our approach
across datasets, we evaluate its performance when trained
on Bosphorus and tested on CK+, since the latter has too
few samples labeled with AU intensities to use for training.
Like for the official Bosphorus benchmark, we only consider
samples with intensity > 0 for both training and testing.

The weighted average PCC and ICC results over all AUs
for the hierarchical PLS, linear PLS, and RBF kernel PLS are
shown in Table II. As expected, the hierarchical PLS gives a
much higher generalization performance than the plain PLS
approaches in both metrics. Moreover, we notice that the
RBF PLS shows inconsistent performance with a significant
drop in terms of ICC compared to the linear PLS. This
supports the claim that using a linear rather than a non-linear
kernel has better generalization properties across-datasets.

When we look at the individual performances for the
various AUs in Fig. 5b, we notice that compared to the
within-dataset experiment on Bosphorus there are more AUs

that benefit from the hPLS model, such as 1 (Inner Brow
Raise), 2 (Outer Brow Raise), 10 (Upper Lip Raiser), 20
(Lip Stretch), 24 (Lip Presser), and 27 (Mouth Stretch), for
which the hierarchical PLS gives a significant performance
boost. This shows that for most of the AUs the hierarchical
PLS generalizes better to new out-of-domain data.

E. Computional Efficiency

As we mentioned earlier, the hPLS has lower computa-
tional costs than the RBF kernel PLS. We investigate this
statement in more details in this subsection based on the run-
time of the crossvalidation experiment on Bosphorus. When
looking at the complexity alone, one can see that for RBF
PLS, the kernel matrix calculation is much slower than using
simply the data matrix like in linear PLS, and also the rest
of the optimization in kernel PLS is more computationally
demanding. Additionally, the parameter estimation in case
of the hPLS needs to search just for the number of latent
variables for each node, which is much faster for linear PLS
than for non-linear PLS, since no kernel matrix needs to
be calculated. The average number of locally linear PLS in
the learned hierarchy for the individual AUs is shown in
Fig. 4. On the other hand, for RBF kernel PLS the search
for parameters has to go over w in addition to the number of
latent variables. The runtime of the crossvalidation over all
AUs on Bosphorus including I/O and parameter estimation
took around 32 minutes for a Matlab implementation of
hPLS, whereas the runtime for the RBF kernel PLS with
a slightly larger search space for our C++ implementation is
more than 7 hours.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a hierarchical regression model for AU
intensity estimation. Our model can automatically capture
the non-linearity in the relation between the features and the
intensities of the individual AUs. It adapts to the varying
complexity in the domain by learning a suitable hierarchical
structure. The proposed approach outperformed the more
complex kernel-based models while at the same time having
much lower computational costs.

As a future direction, we intend to extend our model to
incorporate some prior knowledge of the problem domain.
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(c) AU20 (Lip Stretcher)
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Fig. 6: The latent space learned by the local PLS models in the first two levels of the hierarchy and for different AUs.

In this paper, the model learned the structure driven entirely
by the data. Incorporating knowledge about the participant
subjects can be promising. For example, by using visual
facial attributes or gender and race information to learn a
better grouping of the samples in the local subsets the prior
information could guide the clustering towards grouping
more visually similar persons.
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