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1. Introduction
In the prevailing approach, attributes are learned from

all seen classes and then reused to describe or classify an
unseen one. However, this doesn’t account for the high
intra-attribute variance. Using all the seen classes helps in
learning visual semantics in a very abstract manner. Hence,
subsets of classes that share similar attributes cannot be dis-
tinguished easily. Eventually, the fine properties of the at-
tribute that help in discriminating a group from another are
lost when it is learned from all the classes. Consider for ex-
ample the attribute beak. The global attribute model would
learn that a beak is an elongated extension at a certain posi-
tion relative to the head; i.e. ignoring the distinctive long
thin beak shape of the hummingbird species or the wide
curved-end of the albatross species. In other words, the
global model does not take advantage of the rich informa-
tion already available in the source dataset. This results in
transferring less discriminative attributes to the novel class.
On the other hand, capturing these specific properties of
beak relative to each subgroup of birds is beneficial. It gives
us the option to select the most proper type of beak to share
with the unseen class. Accordingly, knowing that both Gull
and Albatross are Seabirds, it is intuitive and probably more
discriminative to describe the beak of the California-Gull as
an albatross-like-beak.

2. Approach
Hierarchical representation of concepts and objects is

part of the human understanding of the surrounding world.
This helps us to better learn the commonality as well as
the differences in and across groups. The key idea of our
approach is to take advantage of the embedded structure in
the object category space and extend the notion of global at-
tributes to include different levels of abstraction. The object
hierarchy groups the classes based on their overall visual
similarity; thus provides a natural way to guide the transfer
process to share information from the knowledge sources
that will most likely contain relative information. In the fol-
lowing, we describe the three main steps of our Hierarchical
Attribute Transfer approach (HAT) [2].

1) Populating the hierarchy with attributes We exploit
the object hierarchyH by transferring the attributes annota-
tion in a bottom-up approach from the seen classesQ to the
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Figure 1: Illustrative figure of our HAT model.

root (Figure 1a). The active attributes of node nj are:

anj
m = 1 if ∃ani

m = 1 and ni ∈ child(nj), (1)

where child(n) is the set of nodes of the subtree rooted with
n. Consequently, the root node of H will be described with
all attributes of Q.
2) Learning at different levels of abstraction To learn
the various attributes classifiers, we first define the support
set of an attribute am, i.e. the set of samples that provide
evidence of am. An attribute a

nj
m in the hierarchy has the

support set supp(anj
m ). The set contains samples labeled

with the attribute of that class (lbl(anj
m ) : nj ∈ Q), and ad-

ditionally the samples of its children which share the same
attribute with nj , i.e.

supp(anj
m ) =

⋃
ni∈child(nj)

supp(ani
m ) ∪ lbl(anj

m ). (2)

To capture the fine differences that characterize an
attribute at node n, we use a child-vs-parent learning
scheme Figure 1b. The attribute anc

m is learned with the fol-
lowing positive (TP ) and negative (TN ) sets

TP = supp(anc
m ) TN = supp(anp

m )− supp(anc
m ), (3)

where np is the parent node of nc.
3) Hierarchical transfer We then leverage the hierarchy
to guide the knowledge transfer process and find the proper
attributes to transfer to novel classes. Accordingly, for a
novel class zl inH, we transfer the attributes of its ancestors
across the different levels of abstraction (e.g. aPersianCat

furry in
Figure 1c), such that:

szl(a
zl
m|x) =

∑
ni∈anc(zl)

[[azlm = ani
m ]] sni(a

ni
m |x)∑

ni∈anc(zl)

[[azlm = ani
m ]]

, (4)
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Figure 2: The (a) accuracy and (b) mean AUC of DAP and
HAT in CUB with varying number of classes in the source.

where [[·]] is the Iverson bracket, sn(anm|x) is the score of
the attribute am for node n given sample x, and anc(n)
is the set of ancestor nodes of n. Once the attributes are
transferred to zl, the final prediction score s(zl|x) of the zl
category can be defined by averaging over the attributes of
that class as:

s(zl|x) =

M∑
m=1

[[azlm = 1]] s(azlm|x)

M∑
m=1

[[azlm = 1]]

. (5)

3. Experiments
We evaluate using three datasets: (1) aPascal/aYahoo

(aPaY); (2) Animals with Attributes (AwA); (3) CUB-200-
2011 Birds (CUB). Each provides different characteristics
regarding the granularity of classes. This give us the chance
to see how the performance of the proposed HAT model
varies with regards to the complexity of the embedded
knowledge in the source set. We learn the object hierar-
chies using the WordNet ontology. As image features1, we
use the output of the 7th layer of the CNN-M2K deep model
from [3]. We train linear SVMs for the attribute classifiers.
Zero-shot Classification In Table 1, we report the nor-
malized multi-class accuracy on the three test sets. Our
model outperforms the state-of-the-art on the three datasets
with a wide margin. Even when compared to our strong
baselines (DAP- and ENS-deep) which use the same fea-
tures and classifiers, HAT still performs the best. Further-
more, we find that normalizing the prediction scores of the
novel classes (Eq. 5) makes the scores more comparable.
This improves the accuracy of both the baseline (ENS-n)
and our model (HAT-n) with the latter surpassing the for-
mer. The improvement in accuracy of HAT relative to the
baseline is higher on AwA and CUB (19% and 30%) com-
pared to aPaY (7%). This is expected since the classes in
aPaY are visually farther apart from each other compared to
the classes in AwA and CUB. Thus, it is harder for the base-
line models (DAP & ENS) to distinguish such fine grained
objects using the abstract global attributes.
Unknown attribute associations of the novel class Al-
though this evaluation setup is not possible with the

1The deep features used in this work are available on: https://
cvhci.anthropomatik.kit.edu/˜zalhalah

Model Features aPaY AwA CUB

DAP [5] shallow 19.1 41.4 -
IAP [5] shallow 16.9 42.2 -
AHLE [1] shallow - 43.5 17.0
HEX [4] deep - 44.2 -

DAP deep 31.9 54.0 33.7
ENS deep 31.7 57.4 29.0
HAT (ours) deep 38.3 63.1 44.4

ENS-n deep 43.1 57.7 37.3
HAT-n (ours) deep 46.3 68.8 48.6

Table 1: Zero-shot multi-class accuracy.

global attribute model, HAT enables us to carry out zero-
shot recognition even if the attribute description of the novel
class is unknown. To do that, we again leverage the hierar-
chy and transfer the attribute description of the parent node
to the novel class. Using this setup, HAT achieves an ac-
curacy of 21.1% (aPaY), 52.6% (AwA) and 25.9% (CUB).
This drop in performance is reasonable since we are trans-
ferring the more generic attributes of the parent. Hence,
confusion can arise when multiple test classes share the
same parent in the hierarchy. Nonetheless, HAT makes it
possible to perform attribute-based zero-shot classification
when only the novel class label is available.
Source set complexity We use the CUB dataset and start
with a random set of 25 classes to be in the source. We
gradually increase the source set with additional 25 random
classes. At each step, the rest of the 200 classes is used
as the target set to conduct zero-shot classification. This
helps to have a better understanding of the characteristics
of the different models as the richness of the embedded in-
formation in the source changes compared to the target. In
Figure 2 we see that when the source is relatively poor and
contains less structured knowledge, both DAP and HAT per-
forms at the same level. However, as the source get big-
ger and more complex HAT consistently outperforms DAP
with an increasingly wider margin. Unlike DAP that uses
a single layer of global attributes, HAT is able to take ad-
vantage of the complexity of information available in the
source. HAT captures the commonality among the cate-
gories and exploits it to learn and transfer more discrimi-
native attributes to distinguish the unseen categories.
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