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Abstract

Due to the lack of large-scale datasets, the prevailing

approach in visual sentiment analysis is to leverage models

trained for object classification in large datasets like Im-

ageNet. However, objects are sentiment neutral which hin-

ders the expected gain of transfer learning for such tasks. In

this work, we propose to overcome this problem by learning

a novel sentiment-aligned image embedding that is better

suited for subsequent visual sentiment analysis. Our em-

bedding leverages the intricate relation between emojis and

images in large-scale and readily available data from so-

cial media. Emojis are language-agnostic, consistent, and

carry a clear sentiment signal which make them an excellent

proxy to learn a sentiment aligned embedding. Hence, we

construct a novel dataset of 4 million images collected from

Twitter with their associated emojis. We train a deep neural

model for image embedding using emoji prediction task as a

proxy. Our evaluation demonstrates that the proposed em-

bedding outperforms the popular object-based counterpart

consistently across several sentiment analysis benchmarks.

Furthermore, without bell and whistles, our compact, effec-

tive and simple embedding outperforms the more elaborate

and customized state-of-the-art deep models on these public

benchmarks. Additionally, we introduce a novel emoji rep-

resentation based on their visual emotional response which

supports a deeper understanding of the emoji modality and

their usage on social media.

1. Introduction

Analyzing people’s emotions, opinions, and attitudes to-

wards a specific entity, an event or a product is referred to

as sentiment analysis [29, 25]. Sentiment can be reduced

to positive, neutral, and negative, or can be extended to a

richer description of fine-grained emotions, such as hap-

piness, sadness, or fear. Summarizing and understanding

sentiment has important applications in various fields like

interpretation of customer reviews, advertising, politics, and

social studies. Thus, automated sentiment analysis is an ac-
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Figure 1: Images with similar objects may show different

sentiments. Unlike the object neutral representation, emoji

embedding is well aligned with the sentiment label space.

Hence, it is expected to generalize well in transfer learning

settings for visual sentiment and emotion analysis.

tive subject of research to devise methods and tools to en-

able such applications [20, 35, 2].

Driven by the availability of large-scale annotated

datasets [15, 40] along with modern deep learning models,

language sentiment analysis witnessed great improvements

over the last few years [32]. However, visual sentiment

analysis still lags behind. This is mainly due to the lack

of large-scale image datasets with sentiment labels. Current

datasets (e.g., [43, 33, 2, 23, 28]) are scarce and too small to

appropriately train deep neural networks, which are prone

to overfitting the small training data.

To overcome the previous problem, the dominant ap-

proach currently is to employ cross-domain transfer learn-

ing methods. This is achieved by pretraining a deep neu-

ral network on a large-scale dataset for object classification,

such as ImageNet [38], and then fine-tuning the network for

sentiment classification on the small target dataset. This ap-



proach is unanimously adopted by recent visual sentiment

models and has led to improved results, e.g. [43, 7, 33].

Nonetheless, object categories and sentiment labels are not

aligned and rather orthogonal. Object labels are sentiment

neutral; i.e. objects of the same category can exhibit various

emotions (Fig. 1). Hence, the domain gap between object

recognition and sentiment analysis is significant. Pretrain-

ing a model with an object-focused embedding may not be

the most useful representation for subsequent transfer learn-

ing for sentiment or emotion classification.

Given that collecting data for the target task is impracti-

cal, is there an alternative representation which 1) is better

aligned with sentiments and 2) can be learned efficiently

with minimum overhead? Emojis, with the advent of social

media, became a prevailing medium to emphasize emotions

in our communications such as happiness , anger , or

fear . Not only do emojis carry a clear sentiment sig-

nal by themselves (see Fig. 1), they also act as sentiment

magnifiers or modifiers of surrounding text [34]. Addition-

ally, due to their prominent use in social media like Face-

book, Twitter and Instagram, one can relatively easily tap

into large amounts of readily available data without the need

for any manual labeling. All these factors turn an emoji-

based representation into an attractive candidate for our tar-

get task of visual sentiment analysis. In fact, emojis have

been successfully leveraged for language sentiment analy-

sis recently [17, 14, 36].

However, the interaction among emojis and the corre-

sponding images in social media remains elusive. Is there

a strong correlation between an emoji and a visual signal?

And if so, do emojis capture the visual sentiment exhibited

in images? The answer to these questions is not straight-

forward. Social media data is known to be noisy [3], and

the use of emojis is influenced by the user’s cultural back-

ground [4, 26] and major temporal events [39]. These hur-

dles represent important challenges to learning an effec-

tive emoji representation that can generalize well across do-

mains. In this paper, we present the first work to address the

previous questions with a thorough analysis of emojis and

their visual sentiment connotation.

To that end, we leverage weakly labeled data collected

from social media (e.g. Twitter) to build a large-scale

dataset of 4 million images and their corresponding emoji

annotation. Through extensive experiments, we demon-

strate that an emoji based representation can be effectively

learned from such noisy data. Moreover, using off-the-shelf

deep neural models and without bells and whistles, we show

that our emoji embedding exhibits remarkable generaliza-

tion properties across domains and outperforms state-of-

the-art in visual sentiment and fine-grained emotion recog-

nition. Additionally, we introduce a new perspective on

emoji interpretation using their visual emotional signature

and their perceived similarity in the visual emotion space.

2. Related Work

Visual sentiment analysis While sentiment analysis from

text has been extensively studied, extracting sentiment from

visual data has proven to be more challenging, primarily

due to the lack of large-scale datasets suited for advanced

models like deep neural networks. Most available datasets

are small and contains only hundreds (e.g. [30, 43]) or a

few thousands (e.g. [44]) samples. Hence, many visual

sentiment methods rely on hand-crafted features (e.g. color

histograms, SIFT) to train simple models with few param-

eters in order to avoid the risk of overfitting the training

data [28, 27, 45]. However, it is hard for such low-level fea-

tures to effectively capture the higher level concept of sen-

timent. One way to overcome the previous problem is by

learning an intermediate representation from external data

that helps bridging the gap between low-level features and

sentiment. For example, this can be achieved by learning

an intermediate concept classifier for Adjective Noun Pairs

(ANP) as in the SentiBank model [6]. However, the most

common approach is to take advantage of powerful mod-

els, i.e. deep neural networks, in a transfer learning set-

ting [43, 7, 42]. In this case, the neural network model is

initially trained on a large-scale dataset for object classifica-

tion [38]. Afterwards, the model is fine-tuned on the target

task for sentiment prediction.

However, while ANP- and object-based embedding lead

to improved performance, both are still not ideal for sen-

timent analysis. It is not clear how to select a good ANP

vocabulary that can generalize well to various tasks requir-

ing the inference of emotions from images. Additionally,

object-based models are not suited for capturing sentiment

since they are trained for sentiment neutral object classifica-

tion. In this work, we propose to learn an emoji-based em-

bedding for cross-domain sentiment and emotion analysis.

Unlike objects and ANPs, emojis carry a strong sentiment

signal which leads to a compact and powerful representa-

tion outperforming the previous methods as demonstrated

by our evaluation.

Emojis Due to the increasing popularity of emojis, there

is great interest in analyzing and studying their usage,

e.g. [19, 24, 31, 26]. Most of this work is carried from a nat-

ural language processing (NLP) point of view, e.g. [5, 10].

More relevant to our work is the analysis of emojis and sen-

timent. Emojis can be shown to act as a strong sentiment

signal that generalizes well when analyzed from a NLP per-

spective [37, 16, 34, 14, 36, 17]. However, whether the

same can be said for a visual sentiment perspective is still

to be determined. Recently, few studies attempted to learn

the correlations between the emoji and image modalities.

In [11], a model is developed to predict the proper emoji

matching a facial expression input. On the other hand, [8]

propose to handle emojis as new modality and introduce a

model to predict visual or textual concepts by using emo-



jis correlations, e.g. learn a ship classifier by leveraging the

ship emoji . In contrast to previous work, and to the best

of our knowledge, this work is the first to propose emoji

embedding for cross-domain visual sentiment analysis and

provide an in depth analysis of their visual sentiment and

emotional interpretation.

3. Emoji for Visual Sentiment Analysis

We aim in this work to learn an efficient and low-

dimensional embedding of images in the emoji space. This

embedding is well aligned with and encodes the visual sen-

timent exhibited in an image. Moreover, it can be learned

efficiently from large-scale and weakly labeled data. To that

end, we introduce a large-scale benchmark for visual emoji

prediction (Sec. 3.1) along with deep neural model for effi-

cient emoji embedding and transfer learning (Sec. 3.2).

3.1. Visual Smiley Dataset

In this section, we describe our method for data collec-

tion from social media, including a) the selection of emoji

categories; b) the analysis of the sample distribution; and c)

a temporal sampling strategy that suits our learning task1.

Categories The emoji list has grown from 76 entries in

1995 to 3019 in the latest Emoji v12.0 in 2019 [41]. Many

of these emojis represent objects categories (e.g. ),

abstract concepts (e.g. ) or animals and plants (e.g.

). These types of emojis are either sentiment neu-

tral or have weak correlation with sentiment that usually

arise from users cultural background or personal prefer-

ences, e.g. towards certain animal classes. Since our goal

is to have an emoji-based representation for sentiment anal-

ysis these types are excluded from our selection. As our

target categories, we chose a subset of 92 popular emo-

jis which commonly referred to as Smileys (e.g. ).

These smileys show a clear sentiment or emotional signal

which make them adequate for our cross domain sentiment

analysis. Moreover, they are among the most frequently

used emojis in social media which further facilitates data

collection and aids the learning process.

Sample Distribution Social media such as Instagram,

Flickr and Twitter represent a rich source for large-scale

emoji data. It is estimated that more than 700 million emo-

jis are sent daily over Facebook while half the posts in In-

stagram contains emojis [12]. Here, we select our samples

from Twitter such that we target only tweets that contain

emojis and are associated with at least one image. Further-

more, to increase the relevance between the emojis and the

associated image in the samples we constrain the selected

tweets to those that do not contain urls, hashtags nor user

1The visual smiley dataset collected and used as part of this work will

be released as a public benchmark.

(a) Raw data distribution

(b) Temporally balanced data distribution

Figure 2: Emoji frequency in (a) a raw sample of data and

(b) the temporal balanced sampled dataset. Dataset (b) is

used in this study.

mentions. This is motivated by the observation that these

elements usually represent important context cues to under-

stand the use of the selected emoji that goes beyond the as-

sociated visual data. We additionally ignore tweets that are

quotes or replies to other tweets to reduce redundancy.

Given the previous criteria, we retrieve a collection of

2.8 million Tweets from the first six months of 2018. Fig. 2a

shows the label distribution of the data. We see that this

data has a long-tail distribution and is heavily biased to-

wards a few categories, with the top 5 most frequent emojis

(i.e. ) representing around 40% of the retrieved

samples. This poses a great challenge for most standard ma-

chine learning methods as an imbalanced training dataset

may lead a training process to trivially predict the most fre-

quent labels instead of learning a more meaningful repre-

sentation. Additionally, we notice that when collecting the

data from a relatively short time period the content of sam-

ples tends to be heavily biased towards a few major tempo-

ral events (e.g. USA presidential elections or World Cup).

This in turn reduces the variability of the images and hence

the ability of the model to generalize well across domains.

Temporal Sampling To overcome content homogene-

ity, we propose to retrieve the samples from a relatively

large time period while uniformly sampling the tweets from

smaller temporal windows. Specifically, we collect tweets

from January 1st 2016 till July 31st 2018. We split the

time range to sequential time windows of 30 days. Fur-
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Figure 3: Our model (SmileyNet) (a) learns to embed im-

ages in the low-dimensional emoji space from large-scale

and noisy data collected from social media. This embed-

ding can subsequently be leveraged via transfer learning (b)

for many target tasks in which deriving emotions from vi-

sual data is needed, such as sentiment and emotion analysis.

thermore, to alleviate label imbalance we randomly select

a maximum of 4000 tweets for each emoji category within

each window. We additionally allow valid samples to have

a maximum number of 5 emojis, meaning that certain sam-

ples will contain multiple labels. In total, this methodol-

ogy led to about 4 million images with 5.2 million emoji

labels. Fig. 2b shows the label distribution of the sampled

dataset. We see that compared to the raw data distribution,

our dataset is more balanced across the various categories.

Nonetheless, some emojis still occur relatively more often

than others due to the multi-label nature of the data and the

innate inter-emoji correlations.

To get a better notion of the correlation between labels,

we construct the normalized correlation matrix of all emo-

jis in the collected data2. As expected, by analyzing the

correlation matrix we see that the two most frequent emo-

jis and co-occur with most of the categories. Ad-

ditionally, the correlation matrix reveals some semantically

related groups like [ ] and [ ].

3.2. Smiley Embedding Network

Given the large-scale nature of the collected dataset, it

is possible to leverage deep neural network architectures

for effective learning of the emoji embedding with reduced

risks of data overfitting. Formally, our goal is to learn an

embedding function f(·) that maps an image x ∈ X dx to an

embedding in the emoji space e ∈ Ede , i.e. f : X dx → Ede .

Such that dx and de are the dimensionality of the image

and emoji spaces respectively. An efficient option to realize

f(·) is through the proxy task of explicit emoji prediction

(Fig. 3a). This has two main advantages compared to other

options like metric learning in the emoji space. Firstly, it

is more computationally efficient compared to Siamese and

2See supplementary for the full correlation matrix

Triplet networks that are usually employed for metric learn-

ing. Hence, it scales easily to large datasets while using

less resources. Secondly, the learned embedding through

the emoji prediction task is interpretable since each dimen-

sion in e corresponds to one of the emoji categories, i.e.

de = C where C is the number of emoji categories. This

enables subsequent analysis of the embedding, better under-

standing of model properties, and a novel zero-shot visual

sentiment learning task as we will see in Sec. 4.

To that end, we train an emoji prediction model h(·) such

that: h(x) = σ(f(x)), where σ is the sigmoid activation

function since our task is a multi-label classification prob-

lem. Then h(·) can be optimized using the binary cross

entropy loss:

L(xi,yi) = −

C∑

c=1

yi,c log(h(xi)c), (1)

where yi,c is the binary label for the emoji of class c, and

h(xi)c is the probability of the model predicting class c for

image xi.

Transfer learning Once f(·) is trained, we can easily

adapt our model across domains for a target task g(·) such as

sentiment or emotion prediction (Fig. 3b). This is achieved

through t(·) that maps the emoji embedding to the target la-

bel space T , such that g = t ◦ f : X → E → T . t(·) is

realized using a multilayer perceptron and g(·) can then be

learned using the small training data of the target task.

4. Evaluation

We evaluate our embedding model (SmileyNet) for three

main tasks: 1) emoji prediction which is used as a proxy to

train our embedding model; and the transfer learning tasks

of 2) visual sentiment analysis and 3) fine-grained emotion

classification. Furthermore, 4) we introduce and analyze a

novel representation for emojis that captures their unique

properties in the visual sentiment space.

4.1. Emoji Prediction

Implementation Given our visual smiley dataset, we se-

lect 45 thousand images for validation and 91 thousand for

testing. Samples in the validation and testing splits are bal-

anced such that each category has around 500 and 1000
samples, respectively. We use the remaining data to train

our SmileyNet model. We adopt a residual neural net-

work with 50 layers ResNet50 [18] as the base architecture

for SmileyNet. The model parameters are estimated using

Adam [21] for stochastic gradient descent optimization with

an initial learning rate of 1e− 4. Furthermore, we leverage

data augmentation during training by randomly selecting an

image crop of size 224 × 224 pixels with random horizon-

tal flipping and scaling. The model is trained for 320, 000
iterations with a batch size of 128 images.



Model mTop-1 mTop-3 mTop-5 AUC

Random performance 1.7 3.3 5.4 50.0

SmileyNet (Raw-Dist.) 9.5 11.6 16.3 67.6

SmileyNet (Temp-Sampling) 11.5 14.4 19.5 69.8

Table 1: Emoji prediction performance of our SmileyNet on

the proposed Visual Smiley Datasets.

Evaluation metric Since emoji prediction is a multi-label

task, we adopt a variant of the Top-k accuracy that accounts

for the number of correct emojis in the top k predictions out

of the set of ground truth emoji of each sample. Formally:

mTop-ki(pi, yi) =
|indk(pi) ∩ ind(yi = 1)|

min(k, |ind(yi = 1)|)
, (2)

where pi = p(y|xi) is the model prediction given image

xi, indk(pi) are the indexes of the top k predictions, and

ind(yi = 1) are the indexes of the ground truth labels. No-

tice that here pi ∈ R
C and yi ∈ R

C are vectors in which

pi,c and yi,c are individual entries. The final mTop-k is the

average over all N samples in the test split:

mTop-k =
1

N

N∑

i

mTop-ki(pi, yi). (3)

We also report the average area under curve (AUC) of the

receiver operating characteristic (ROC) of all categories.

Results Along with the full model, we test two variants:

1) a random baseline and b) our SmileyNet trained with the

raw emoji distribution (Raw-Dist.) without the proposed

temporal sampling (Sec. 3.1). Table 1 shows the perfor-

mance of these models in emoji prediction on the testing

split. We notice that even with a noisy data source as so-

cial media, our model is able to predict emojis from im-

ages significantly better than a random baseline. Further-

more, our temporal sampling method leads to higher perfor-

mance, i.e. better learned embedding, compared to a model

learned with the raw and biased data distribution. In gen-

eral, we see that the accuracy is relatively low. This can

be attributed partly to the expected amount of noise in data

annotations since it is collected automatically without any

human intervention; and also to the strict evaluation metric

adopted in this task which tend to underestimate the model

performance. For example, a prediction of by our model

for an image labeled with is considered wrong. Addi-

tionally the model needs to predict all annotated emojis for

an image to get a full score on it. Nonetheless, our subse-

quent qualitative and transfer learning evaluation confirms

that our SmileyNet in fact learns a compelling visual em-

bedding with high performance.

Qualitative results Fig. 5 shows the top predictions of

our SmileyNet for some test images from Twitter [43]. Our

Figure 4: Low dimensional representation using the first

two principal components of the emoji embedding and the

corresponding sentiment label (blue for negative and yellow

for positive sentiment).

model produces sensible predictions that capture the gen-

eral sentiment in the image. Unlike a model trained for ob-

ject classification, SmileyNet output is not tailored to the

object category but rather to the sentiment depicted by the

object. This can be best observed by checking the model

output for similar objects, like the faces, the dogs and the

cars images. Our model predicts emojis of sentiment with

opposite polarities when the input image is composed of

sub-images (like the car accident and the child, 3rd row)

or when the main sentiment region is not in focus (like the

image of the damaged road, 3rd row). This can be related

to the holistic approach of the SmileyNet. We hypothesize

that an attention or region based processing might help in

prioritizing the most influential image area for final predic-

tions. Finally, predictions on images similar to those in the

4th row, suggest that SmileyNet might be helpful not only

for sentiment analysis but also for novel applications such

as detecting violence or abuse in images.

4.2. Visual Sentiment

Dataset We evaluate our model on the Twitter

dataset [43]. The dataset contains 1269 images col-

lected from Twitter and labeled manually by several

annotators with positive and negative sentiment. It has

3 splits based on the degree of agreement among the

annotators: “5 agrees”, “4 agrees”, and “3 agrees”. For

example, 4 agrees split has images that at least 4 human

annotators agreed upon their sentiment label.

Emojis & sentiment We use our SmileyNet to embed all

images of the “5 agrees” split in the emoji space without

any further training. Fig. 4 shows the projection of these

embeddings in 2D using the first 2 dimensions of principle



Figure 5: Qualitative results for the top 5 emojis predicted per image using our SmileyNet (ordered left to right). In contrast

to a sentiment neutral object representation, our model produces diverse output for objects of the same category depending

on the emotion conveyed in the image, e.g. see predictions on faces, dogs & cars in 1st, 2nd & 3rd rows.

Twitter Visual Sentiment [43]

Model 3 agrees 4 agrees 5 agrees

ObjectNet 74.0 79.0 82.1

SmileyNet (ours) 76.5 80.0 84.7

Table 2: 1-Nearest neighbor sentiment prediction accuracy.

component analysis (PCA). One can clearly see that sam-

ples of both positive and negative sentiments are well sepa-

rated in this low dimensional space. This indicates that our

emoji embedding does indeed capture the visual sentiment

exhibited in the image. Furthermore, using the Spearman’s

rank-order correlation analysis, we analyze the relations be-

tween the individual emoji dimensions and the sentiment

labels. We find out that emojis with the highest correla-

tion with the positive sentiment are: ( , 0.62), ( ,0.62),

( , 0.58), ( , 0.56) and ( , 0.53), whereas emojis with

the highest correlation to negative sentiment are: ( , 0.67),

( ,0.66), ( , 0.65), ( , 0.64) and ( , 0.64).

Emojis & objects To evaluate the quality of the embed-

ding quantitatively, we use 1 nearest neighbor classification

and do 5-fold cross validation over the sentiment dataset

for each of the 3 splits. We compare our emoji-embedding

to an embedding produced by a model with the same base

architecture (i.e. ResNet50) but trained over the ImageNet

dataset (ObjectNet). As expected, our SmileyNet produces

better embeddings for sentiment analysis than ObjectNet

and outperforms it on all three splits (see Table 2), while

SmileyNet’s embedding is 10 times smaller compared to

that of ObjectNet.

Transfer learning Alternatively, we can adopt a transfer

learning scheme and finetune our model on the target set to

see how well our model can adapt to the target data distribu-

tion from a few samples. We realize t(·) as a fully connected

layer (Sec. 3.2) and use 5-fold cross validation to finetune

and test our model as in [43].

Table 3 compares the accuracy of our model to state-of-

the-art (SOTA) models. Our SimleyNet outperforms the

SentiBank models [6, 9] which embed images in Adjective-

Noun pairs (ANP) space that is learned as well from social

media data. This indicate that emojis are better in capturing

sentiment than text-based cues. We speculate emoji labeling

has the advantage of being universal, finite, and offers an

unambiguous one-to-one mapping between label and emo-



Twitter Visual Sentiment [43]

Model 3 agrees 4 agrees 5 agrees

PAEF [45] 67.92 69.61 72.90

SentiBank [6] 66.63 68.28 71.32

DeepSentiBank [9] 71.25 70.15 76.35

PCNN [43] 76.36 76.52 82.54

Campos et al. [7] 74.90 78.70 83.00

AR+Concat(K=1) [42] 77.79 83.25 86.10

AR+Concat(K=8) [42] 81.06 85.10 88.65

ObjectNet 78.28 82.73 87.67

SmileyNet (ours) 82.69 84.87 89.16

Table 3: State-of-the-art comparison of SimleyNet for vi-

sual sentiment prediction.

Twitter Visual Sentiment [43]

Model 3 agrees 4 agrees 5 agrees

SmileyNet - Con. 73.4 76.0 80.0

SmileyNet - Bin. 74.2 77.1 81.2

Table 4: Zero-shot visual sentiment prediction accuracy.

tion, whereas words carry rich connotations that may make

the design of an effective lexicon mapping words to emo-

tions more difficult. Moreover, our SmileyNet outperforms

the advanced AR model [42] that employs a customized

approach with attention mechanisms when using a single

model (K = 1), like ours, and even when using an ensemble

of K = 8 models. This is significant given that our model

leverages off-the-shelf neural architecture and trained using

noisy social media data. This further demonstrates the ef-

fectiveness of the learned embedding. We hypothesize that

our model can be improved even further by employing an

ensemble of models like in [42] or customized attention

modules such as [13].

Zero-shot visual sentiment prediction Unlike other rep-

resentations, our embedding is interpretable and each di-

mension can be easily related to a certain sentiment class.

That is we can construct a sentiment classifier without using

any training images, i.e. zero-shot learning (ZSL) [22, 1].

To our knowledge, ours is the first work to attempt ZSL for

visual sentiment. We ask 4 annotators to label each of the

emojis in our representation with a positive or negative sen-

timent based solely on the emoji’s visual depiction. Then

we use the average annotation as a mapping t(·) that will

ensemble the emoji’s prediction scores to estimate whether

an image x has a positive or a negative sentiment. Table 4

shows the performance of our model in ZSL setting. Inter-

estingly, while using no training images at all our model is

still capable of producing reliable sentiment prediction that

is competitive with many of the SOTA models in Table 3.

We also see that using equal weighting to each emoji (the

binary version “Bin.”) lead to higher accuracy in compar-

ison to using the average annotation to weight the emoji’s

prediction in the ensemble (the continuous model “Con.”).

Emotion Most Correlated Emojis

amusement

0.31 0.30 0.29 0.27 0.27 0.26 0.26

anger

0.18 0.18 0.17 0.17 0.16 0.16 0.15

awe

0.28 0.24 0.24 0.23 0.23 0.22 0.21

contentment

0.27 0.26 0.24 0.24 0.23 0.23 0.22

disgust

0.29 0.28 0.23 0.20 0.20 0.18 0.17

excitement

0.22 0.20 0.20 0.19 0.17 0.17 0.17

fear

0.21 0.18 0.17 0.17 0.16 0.16 0.15

sadness

0.26 0.25 0.24 0.23 0.22 0.21 0.21

Table 5: Top correlated Emojis with each emotion class.

Model Multi-Class Sentiment

Emotions

You et al. [44] 48.30 -

DeepSentiBank [9] - 61.54

PCNN [43] - 75.34

AR+Concat(K=1) [42] - 84.83

AR+Concat(K=8) [42] - 86.35

ObjectNet 54.42 83.81

SmileyNet (ours) 55.81 87.01

Table 6: Fine-grained emotion classification accuracy on

the Flickr&Instagram dataset [44].

4.3. Fine­grained Emotions
Dataset Finally, we evaluate our model for fine-

grained emotion classification on the Flickr&Instagram

dataset [44]. The dataset contains 23, 308 images queried

from Flickr and Instagram and labeled by Amazon Mechan-

ical Turk with 8 emotion classes: amusement, anger, awe,

contentment, disgust, excitement, fear and sadness.

Emojis & emotions We analyze first the correlations be-

tween emojis and emotion classes. Table 5 ranks the most

correlated emojis per emotion class. Interestingly, many

of the top ranked emojis correspond to our intuition of the

emotion depicted by the emoji’s image itself. However, the

ranking also reveals some unexpected correlations like

with anger and fear, with disgust, with anger, and

with sadness. Some of these come form cultural context

(like ), while others we expect from common confusion

of similarly looking emojis (like the sleepy face and cry-

ing face ).

Transfer learning Table 6 shows the performance of our

SmileyNet in predicting the 8 emotion classes in a trans-

fer learning setting. Similar to the previous section, we

compare our model to ObjectNet which has been trained

previously on the ImageNet dataset as it is commonly the



Figure 6: Confusion matrix of our SmileyNet predictions of

the 8 emotion classes in Flickr&Instagram dataset.

(a) (b) (c)

(d) (e) (f)

Figure 7: Emoji’s emotional fingerprint. Our model reveals

a unique emotional response for each emoji. Fingerprints

with general positive or negative sentiment are colored with

green and blue respectively.

case in literature. As hypothesized previously, SmileyNet is

more suitable for fine-grained emotion prediction and out-

performs a similar model transferred from an object classi-

fication task (i.e. ObjectNet). Moreover, our model outper-

forms SOTA in this task as well and shows that our com-

pact embedding is highly effective for fine-grained emotion

prediction. Fig. 6 gives us a deeper insight on the perfor-

mance of each of the emotion classes. Most of the emotions

are predicted with equal accuracy except for anger and fear

which show high confusion with the sadness. Finally, sim-

ilar to [42], we map the 8 emotion classes to positive and

negative sentiment and report classification accuracy. Our

model outperforms SOTA for this derivative task too, in ac-

cordance to our previous results from Sec. 4.2.

4.4. Emoji’s Emotional Fingerprint

Given our previous analysis, we notice that each emoji in

our representation has a unique signature in the emotional

space. Fig. 7 shows a sample of 6 emojis and their cor-

responding emotional fingerprint (EEF). We see that even

emoji that have similar portrayal such as & or similar

Figure 8: Low dimensional embedding of the emojis using

t-SNE and based on their emotional fingerprint.

semantics like the sleepy & sleeping face have differ-

ent emotional response both in intensity and bias towards

certain type of emotions. Furthermore, projecting the emo-

jis in 2D space based on their emotional fingerprints reveals

further interesting findings (Fig. 8). For example, [ ]

has similar EEF, the EEF of is closer to than to ,

and shows bias towards anger, disgust and fear in its EEF

similar to . We believe this novel representation can

be of great interest for further research in behavioral stud-

ies in social media and deeper understanding of the emoji

modality and its usage.

5. Conclusion

We propose to circumvent current limitations of small vi-

sual sentiment analysis datasets by learning a compact im-

age embedding from readily available data in social media.

Unlike the common object-based embedding, the proposed

embedding is well aligned with the visual sentiment label

space and generalizes better in transfer learning settings.

Furthermore, our embedding can be efficiently learned from

noisy data in social media by leveraging the intricate re-

lation between emojis and images. To that end, we build

a novel dataset, the Visual Smiley Dataset, which we use

to learn an emoji-based image embedding. The evaluation

on sentiment and emotion recognition shows that our low-

dimensional embedding consistently outperforms the com-

monly used object-based embedding and the more elabo-

rate and customized SOTA models. Furthermore, due to its

interpretability we demonstrate that our embedding can be

used for sentiment analysis without any further training in a

zero-shot learning setting. Finally, initial results show that

our embedding can aid novel applications for which infer-

ring emotion from visual data is relevant, e.g. visual abuse

and violence detection. We expect this work findings to be

of interest not only for computer vision and visual sentiment

analysis communities but also for social media studies and

emoji modality understanding.
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