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Abstract—Learning from few examples is considered a very
challenging task where transfer learning proved to be beneficial.
Such a learning framework exploits previous experiences and
knowledge to compensate for the lack of training data in a
novel domain. Knowledge representation plays a vital role in the
type and performance of transfer learning approaches, as well
as its robustness against negative transfer effect. This aspect is
usually not considered in most of the proposed transfer learning
methodologies, where the focus is either on the transfer type or
on the representation. In this work, we study the use of various
high-level semantics in transfer metric learning. We propose
a generic transfer metric learning framework, and analyze
the effect of different semantic similarity spaces on transfer
type and efficiency against negative transfer. Furthermore, we
introduce a hierarchical knowledge representation model based
on the embedded structure in the attribute semantic space. The
evaluation of the framework on challenging transfer settings in
the context of action similarity demonstrates the effectiveness of
our approach.

I. INTRODUCTION
Knowledge transfer is the ability to leverage experiences

and skills obtained previously via a training process to a new
task or domain. This feature is an important characteristic
of the learning process of human beings. We do not learn
tasks in isolation, rather we try to project the experience we
gather through out our lives to facilitate the learning of the
new task. The ability to transfer gives us the advantage of an
initial high performance and to learn faster when handling a
new task while using only few trials (or examples) [1]. Thus,
there is a growing interest to mimic this ability in machine
learning methods in order to cope with extreme situations
where standard learning processes fail or perform poorly. A
common scenario where transfer learning proved to be quite
beneficial is when training data is scarce or not available
(e.g. one- and zero-shot learning [2]–[4]). In such cases, usual
machine learning methods can not be applied or they are not
able to extract a useful model, and therefore, they will fail to
generalize well. Another case is when the data distributions of
train and test samples are not similar. This violates the main
assumption of many machine learning approaches and results
in reduced generalization properties [5].

A knowledge transfer method usually tries to tackle one or
more of the following questions [5]: 1) What to transfer? This
entails the type of knowledge most suitable to be transferred
across domains. Hence, an important feature of the transferred
knowledge is its ability to encode information that is usable
and shareable between tasks. 2) How to transfer? The process
used to incorporate the transferred knowledge from the source
domain in the learning of the target task. 3) When to transfer?
The source and target tasks might be very different, and

transferring knowledge between them may be harmful and
hinders the learning of the target task (negative transfer). Thus,
it is important to find out when previous experiences are
applicable and when they are not.

In this work, we focus on the type of information to
transfer across domains, hence answering the question: What
to transfer? and its consequent effect on other transfer op-
tions. There are three common approaches in this direction.
a) Feature representation transfer, where the focus is on learn-
ing a good knowledge representation model for the target
domain based on relevant information in the source domain [6],
[7]. b) Parameter transfer, here, the models (or parameters)
learned in the source domain are used to regularize or to
include as a prior in the model learning of the target task
[8]. c) Instance transfer, where all or some of the samples in
the source domain are re-used in the learning of the target
task in order to overcome the low number of target training
samples [9]. While most of the previous works tackle these
options separately (e.g. [4], [9], [10]), we believe they should
be considered jointly. The choice of feature representation and
how the knowledge is modeled will influence the efficiency of
all transfer options: the representation, instance and parameter
transfer. For example, learning the color distributions in a set of
animal classes is considered a low-level meta-information that
will not hold true when considering different animal categories.
However, learning the visual semantic attribute distribution or
the meta-relations between the categories would hold true even
when moving to a different domain. Such high-level semantics
are less influenced by the low-level feature distribution and
consequently are an adequate knowledge to be transferred
across domains. In transfer metric learning literature, this
observation is usually ignored and the focus is on parameter
transfer while using low-level knowledge representation [10],
[11].

Furthermore, the common assumption in evaluating transfer
learning methods is that the source data set is much larger
and more diverse than the target set [3], [4], [12]. However,
collecting data and labeling are expensive tasks. This will
usually result in small datasets for training, and the number
of defined categories in source is much less than the expected
”unseen” categories in target (i.e. small and simple source
domain versus large and diverse target domain). Such an
evaluation setup, that we address in this work, imposes a great
challenge to transfer learning approaches since they have a
limited knowledge source to generalize from it to the target.

To this end, our contribution in this work is: 1) we show the
benefits of using high-level semantic representation for transfer
metric learning. 2) We propose a novel hierarchical knowledge
representation that encodes the embedded semantic structure



of category similarities in the attribute space, and show its
superior performance to other semantic models. Furthermore,
3) we introduce a generic framework for representation transfer
that improves the metric learning model and reduces the
negative transfer effect. 4) The evaluation is conducted in
challenging and realistic settings, where the target set is much
more diverse and different than the source set.

II. RELATED WORK
Knowledge transfer has attracted a lot of attention in the

last years, and several approaches were proposed in various
fields. We refer in this section to two closely related sub-fields
to our work: the knowledge representation transfer and transfer
metric learning. Recent comprehensive surveys on transfer
learning can be found in [5], [13].

Transfer metric learning. While standard supervised and
semi-supervised metric learning are widely popular [14], only
few works tackle the problem of knowledge transfer in metric
learning. In [11], the authors integrated multiple source metrics
into a regularized metric learning framework, and similar to
[15], they used the log-determinant regularization to minimize
the divergence between the source metrics and the target
metric. In contrast, Zhang and Yeung in [10] considered the
transfer metric learning (TML) as a special case of multi-task
learning. They jointly learn the relations between the source
tasks and the target task while learning the target metric matrix.
Their approach, unlike [11], can model positive, negative and
zero task correlations. TML showed superior performance to
[11] when the training data is scarce [10]. Nonetheless, both
approaches used parameter transfer based on low-level feature
representation. To the best of our knowledge, the use of high-
level semantics and the effect of knowledge representation on
other types of transfer options were not addressed before in
the context of transfer metric learning.

Knowledge representation transfer. Various knowledge
models were introduced in the literature. A common repre-
sentation that gained a lot of attention recently is semantic
attributes. They describe the visual appearance of an entity
and represent an intermediate semantic layer between the low-
level features and categories. Attributes were successfully used
in transfer learning applications like object and action zero-
shot recognition [3], [4], [16]. Another model was introduced
by Bart and Ullman [2]. They represented an instance of an
unseen class by its similarity to known categories for one-
shot object recognition, and showed a significant improvement
in classification performance. Hierarchies, on the other hand,
are considered a popular knowledge representation. In contrast
to other types of representations, they are able to capture
information at different resolution levels. Usually, the structure
is defined either manually [17], based on external linguistic
sources like WordNet [12] or automatically driven from data
[18]. Still, linguistic sources are not suitable for all types of
information. For example, visual relations between actions are
not well defined in such sources since actions are mapped
to verbs and not nouns. On the other hand, constructing a
hierarchy based on low-level data distribution is not favorable
in transfer settings, since source and target may differ signifi-
cantly in this regard. To this end, and to avoid using manually
tuned hierarchies, we introduce a hierarchical model that is
learned from the embedded structure in the attribute space and
encodes the relative similarities between categories.

Additionally, in the evaluation of transfer learning ap-
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Fig. 1: The learned hierarchy of action classes in Olympic Sports.

proaches, it is commonly assumed that the target set is smaller
and less diverse than the source set [2]–[4], [10], [16]. Even
in the large-scale evaluation of [12], where different transfer
approaches for zero-shot object recognition are tested, the
source set contained four times more classes than the target
set. We address here the opposite settings, i.e. the source of
knowledge is smaller and less diverse than the target set, which
represent a more challenging evaluation settings.

III. APPROACH
A. Semantic Similarity Space

Most of previous approaches use low-level features to
compare objects or actions [10], [11], [15], [19]. We believe
that semantics at different levels of complexity can be a
better representation of source knowledge to be transferred
across domains. While the feature similarity space is usually
high dimensional and dependent on the data distribution in
the source domain, the semantic similarity space is lower
dimensional, concise and is more robust to the changes in the
data distributions between target and source domains. There
are two common semantic spaces that are usually used as
an intermediate representation. The attribute similarity space,
where instances are represented by their visual properties, and
the category similarity space, where instances are represented
by their resemblance to other previously learned categories.
We also introduce a novel representation of a third similarity
space, the hierarchical similarity space, where instances are
represented by a hierarchical structure that captures the visual
properties of the instance at different resolution levels.

1) Attribute Similarity Space: Attributes define an inter-
mediate representation between low-level features and high
level categories [3], [4]. Semantic attributes describe an entity
regarding its visual appearance, parts and motion patterns (e.g.
is-round, has-ears and forward-motion). Hence, they can be
easily shared across categories and even used to predict unseen
classes if they can be described using the same set of attributes.

In the attribute similarity space A, the different semantic
attributes span the basis of the space where each axis encodes
the presence of one of the attributes as well as its intensity
(or confidence for binary attributes) in a certain data instance.
Samples that belong to the same category are close to each
other in A since they share the same properties, and they will
form a tight cluster of points that are distinguishable from
other samples of different categories. Therefore, the closer the
points are to each other in A the more attributes they share,
and consequently, the more similar they are.

The samples in the d dimensional feature space X d are



mapped to space A using fA(x):

fA(x) : X d → An and
fA(x) = [fa1(x), fa2(x), . . . , fan(x)]

T (1)

where fai
(x) is the prediction score of attribute ai on instance

x, and n is the number of defined attributes.
2) Category Similarity Space: Humans do not only use

visual properties to describe entities in their environment.
It is also common to use inter-class relations as means of
description. Consider for example the action class triple-jump;
it can be described as an action similar to class run and
class jump. This intra-class similarity pattern is not specific
to a certain sample of triple-jump, rather it characterizes all
samples that belong to this category.

In that sense, the category similarity space C provides
a meaningful semantic space to compare different actions
in terms of their similarity patterns to previously learned
categories [2]. In C, the bases are spanned by the predefined
categories, where each axis encode the resemblance of a
sample to a learned category.

Samples from the feature space are mapped to C based on
fC(x):

fC(x) : X d → Cm and
fC(x) = [fc1(x), fc2(x), . . . , fcm(x)]T

(2)

where fci(x) is the prediction score of category ci on instance
x and m is the number of categories.

3) Hierarchical Similarity Space: A common property of
the previously defined spaces is that both of them represent
semantics at a single layer of resolution. That is, both of
them ignore the implicit structure that exists in the semantic
space. Such structure allows us to have semantics depicted at
various levels of resolution or complexity, which enriches the
knowledge obtained in the source domain and provides a better
semantic representation of samples.

Consider for example the categories walk, jump and jump-
forward. While the last one is partially similar to the first two,
it is better represented by the combination of both, walk-jump,
and learning the common pattern between these two classes
can provide a higher category of semantics that suits the novel
class of jump-forward.

However, constructing such a hierarchy based on low-level
features will not necessarily result in a semantically meaning-
ful structure. Hence, we propose to capture this hierarchical
model by exploiting the similarity between categories in the
attribute space. Attributes correspond to observable properties
of the categories, and the more attributes are shared between a
couple of categories the higher is the overall visual similarity
between the pairs.

Based on this observation, and assuming that each of the
action classes is described with a vector of semantic attributes
of length n, we can exploit this representation in order to
build our hierarchical model by grouping action categories
close to each other in the attribute space (Figure 1). This is
achieved by applying an agglomerative hierarchical clustering
algorithm over the attributes representation of the classes to
get a dendrogram depicting the hierarchical clustering result.
The dendrogram is then used to construct the final actions
hierarchy by interpreting the action classes as leaf nodes
and the intermediate clusters at different similarity threshold
levels as inner nodes. The sub- and super-cluster relations are
translated to is-a relations in the tree structure. For the case of
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Fig. 2: The attribute correlations on a) source set (Olympic Sports)
and b) target set (ASLAN), (Best seen in color).

using binary attributes to describe the various action classes,
we use a hierarchical k-means clustering algorithm with the
Manhattan distance (L1) to capture the similarity in An.

Then instances x ∈ X d are represented in the hierarchical
similarity space H:

fH(x) : X d → Hk and
fH(x) = [fn1

(x), fn2
(x), . . . , fnk

(x)]T
(3)

where fni
(x) is the prediction score of node i in the hierarchy,

and k is the number of nodes. The node classifiers are trained
in child-vs-parent manner. That is, if pos(ni) =

⋃
pos(nj)

is the positive set of node ni where nj ∈ child(ni), then
the classifier fni

is trained on pos(ni) as the positive
set against {pos(np)/pos(ni)} as the negative set, where
np = parent(ni).

B. Decorrelated Normalized Space
The learned semantic similarity spaces will implicitly

model the correlations of the data in the training set. Such
correlations are related to the data distribution in the source
domain which most likely differ significantly from the dis-
tribution in the target domain (Figure 2). Hence, transferring
such knowledge across domains will likely result in a negative
transfer effect [1], [5]. Therefore, it is quite important to
eliminate the correlations learned in the source domain from
the semantic spaces in order to restrict the negative transfer.

Motivated by the work of [20] on attribute decorrelation
and [21] on removing co-occurrence patterns from the bag-
of-words model, the decorrelation of the semantic similarity
space S (S ∈ {A, C,H}) can be efficiently achieved using
the whitening transformation. Considering the data in S is
represented by matrix Y, then the correlations are modeled by
the covariance matrix Ω = YYT . By whitening Y, the data is
transformed to space S̃ where the bases are decorrelated and
given same importance, which is the result of transforming Ω
to the identity matrix. The whitening transformation W of S
is obtained by analyzing the covariance matrix Ω such that:

W = VΣ−1/2 and Ω = VΣVT (4)

The columns of V are the eigenvectors of the covariance ma-
trix, and Σ is a diagonal matrix whose diagonal elements are
the corresponding eigenvalues (Σii = λi). If some eigenvalues
are very small (λi < θ) we ignore the corresponding vectors
in V to have a robust estimation of W:

Ŵ = V̂Σ̂−1/2 where Σ̂ii > θ (5)

The vectors in the whitened space are then normalized by
their norm to have a better estimation of the similarity. Thus,



the data representation in S is transformed to the decorrelated
normalized space Sdn using:

fSdn(x) = ŴT y/‖ŴT y‖2 where y = fS(x) (6)

C. Similarity Metric Learning
To compare instances in the semantic similarity space, we

learn a similarity metric in that space in order to adapt to the
positive and negative pairs distribution in the target domain.
For that purpose we use the Logistic Discriminant based Metric
Learning (LDML) [19].

The metric learning problem in LDML is formulated as a
standard logistic discriminant model where the maximum log-
likelihood is used to optimize the parameters of the model.
LDML has a convex optimization objective which guarantees
an optimum global solution. However, our approach is not
restricted to a certain metric learning method as we will show
later in Section IV-D.

IV. EVALUATION
We evaluate our framework using two publicly available

data sets. The first one is the Olympic Sports data set [22].
It contains 781 videos of 16 action classes collected from
YouTube, like hammer-throw, tennis-serve and triple-jump.
We use the attribute annotations provided by [16], where
the actions are labeled with 40 semantic attributes describing
motion, pose and objects, such as lift-something, throw-away,
two-arms-open and outdoor. The second data set is ASLAN
which has been recently published in [23]. The data set is
collected for the main task of comparing actions (similar/not-
similar). It has about 432 action classes with more than 3600
video samples. Each class has about 8.5 video samples with
more than 100 classes having only one sample each.

In our experimental settings, we use Olympic Sports as
source and ASLAN as target data set. This poses a very
challenging problem because of the high diversity in ASLAN
compared to Olympic Sports (432 to 16 different classes).

As a video descriptor, we use the bag-of-words (BoW)
model based on histograms of oriented gradients and optical
flow (HOGHOF) [24] with a vocabulary of size 4000. We use
that BoW model to train the different classifiers, presented in
Section III-A, on the training split of Olympic Sports. The
features are preprocessed with a power transform [25] (α =
0.3) before training a linear support vector machine, where
the parameters of the classifiers are estimated using a 5-fold
cross validation. For the decorrelated normalized space, we
set θ = 10−8. To simulate a real transfer learning problem,
we do no further training of classifiers or the BoW model
on the target set (ASLAN), and only the similarity metric is
adapted from the available training data to infer a reasonable
comparison metric in each of the semantic similarity spaces.
The threshold of similarity is automatically learned using a
linear SVM trained on the distances between training pairs.

A. Knowledge Representation Transfer
We test first the performance of different semantic spaces

compared to the common low-level similarity space. We learn
the different knowledge representations on Olympic Sports
then we evaluate on ASLAN using the view 1 training/testing
split [23]. The number of training pairs of similar and dissim-
ilar actions is varied from 5% to 100% of the training set. For
each run, a random subset of the training pairs is selected to
learn the similarity and then evaluated on the test split. This
is repeated 10 times, and we report the average accuracy and
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Fig. 3: Overall performance of different semantic similarity spaces
regarding various sizes of the target training set.

standard error of similarity classification as seen in Figure 3.
For the feature space, we report two methods: the first is using
LDML after reducing the dimensionality of the features to 128
using principle component analysis (it is intractable to use the
full feature vector with LDML [19]). While in the second we
use the full feature vector (4000) and train an SVM on the
element wise multiplication of the training pairs [x1. ∗ x2]
(using the absolute difference |x1 − x2| or the concatenation
of the previous two produced inferior performance).

From Figure 3, we see that the three semantic spaces
outperform the low-level feature space. The hierarchical and
category similarity spaces outperform the attribute space when
the training data is scarce. However, when more than half of
the training data is available, the attribute space seems to do
better than the category space while the proposed hierarchical
model outperform both. This confirms our previous hypothesis
on the importance of high-level semantics and their ability to
generalize well when transferred to other domains.

B. Parameter Transfer
The similarity metric learning method LDML does not

allow for parameter transfer in its formulation. Hence we
propose instead a simple parameter transfer approach based
on the information-theoretic metric learning (ITML) [15]. The
metric learning problem in ITML is defined as:

min
M

KL(p(x,M0) ‖ p(x,M)), (7)

where KL is the Kullback-Leibler divergence between two
Gaussian distributions corresponding to a prior metric M0 and
the learned metric M. Additionally, some few constraints on
the upper and lower bound of distances between similar and
dissimilar pairs are taken into account [15]. In (7), the prior
M0 is usually set to the identity matrix I (Euclidean metric) or
the inverse of the covariance matrix. In contrast, we suggest
a parameter transfer approach by setting the prior to be the
metric learned in the source data set (M0 = Msource). In this
case, the metric learning in the target set is regularized to be
close to the source metric (Msource) while at the same time
satisfying the constraints on the pair distances in the target set.

We evaluate the parameter transfer setting by learning first
the similarity metric for each of the three semantic spaces
(Section III-A) in the source set (Olympic Sports) and transfer
that metric using (7) to the target set (ASLAN). In order to
learn the transferred metric matrix, we randomly generate 1500
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Fig. 4: (a) Comparison of the proposed parameter transfer approach ITML+PT to TML and the robustness of different knowledge representations
to negative transfer effect using (b) parameter and (c) instance transfer.

pairs of similar and dissimilar actions in the source, and learn
the similarity using the standard proposed framework. During
testing, we use the same settings as described in Section IV-A.

We compare ITML with the proposed parameter transfer
approach (ITML+PT) to state-of-the-art transfer metric learn-
ing (TML) [10]. We set the parameters for both ITML and
TML as suggested by the authors in [15] and [10], respectively.
Interestingly, ITML+PT outperforms TML (Figure 4a). TML
seems to have a saturated performance after using just 15%
of the training set and slightly profits from the different
semantic representations, while ITML+PT has a higher initial
performance and clearly takes advantage of the characteristics
of the different similarity spaces. This can be due to the
formulation of TML as a special case of multi-task metric
learning, and the assumption that the tasks (source and target)
share a common data distribution which is not the case here.

We also analyze the transfer effect (positive or negative) as
the difference in performance (measured by accuracy) between
using the parameter transfer and without (i.e. setting M0 = I
in (7)). Both attribute and category similarity spaces show a
negative transfer effect while the hierarchical space benefits
from parameter transfer (Figure 4b). It seems, as motivated
in Section I, that the higher the level of semantic knowledge
encoded in the model, the more robust is the model against
negative transfer. Since the learned meta-information (param-
eters) in source domain can still be true in the target even
though they have very different data distributions.

C. Instance Transfer
Here, we add the training pairs from the Olympic Sports

to the training set in ASLAN and evaluate using varying sizes
of the target train set. We report the difference in performance
as in Section IV-B.

We see in Figure 4c that while the hierarchical and attribute
spaces take advantage of the additional samples when the
training set is extremely small (less than 25%), the instance
transfer produces a negative transfer for all semantic spaces
otherwise. This type of transfer introduces an extreme change
in the data distribution of the target train set which is not
reflected in the test set, resulting in performance deterioration.
This also shows how the target and source sets are different
and how challenging are the transfer settings.

D. Importance of Decorrelated Normalized Space
In this experiment, we test the contribution of the proposed

decorrelated-normalized space (DNS) to the transfer perfor-

TABLE I: The effect of the decorrelated normalized space (DNS) on
the performance of various state-of-the-art metric learning methods.

Space / Metric ITML [15] LDML [19] KISSME [26] Cov−1 L2 SVM

H 58.38 54.23 55.50 51.03 52.85 57.58
Hdns 60.62 61.80 60.98 56.98 56.33 56.90

A 55.08 57.80 55.50 50.87 54.00 57.50
Adns 57.52 59.00 58.42 56.37 54.83 57.73

C 57.65 57.50 56.77 54.17 54.50 53.17
Cdns 59.82 57.60 61.20 57.23 55.50 57.63

X 55.38 58.95 49.83 49.67 50.00 50.00
Xdns 56.07 52.67 54.33 53.00 56.53 56.05

mance. We test using three state-of-the-art metric learning
methods (ITML [15], LDML [19] and KISSME [26]) and three
commonly used metrics (the Mahalanobis distance using the
inverse of the covariance (Cov−1), the L2, and SVM as used in
Section IV-A). We use all training pairs in the target and report
the accuracy with and without using a decorrelated normalized
space.

In Table I, we see that in most of the cases (22 out of
24), the decorrelated space increased the performance of the
transfer metric (up to 7% absolute increase). We also see that
the proposed framework is quite generic and not restricted to
a certain metric learning method. Even when using a simple
metric as L2, DNS helped to learn a better similarity metric.
The hierarchical model achieves the best performance using
LDML with 61.80% and both the hierarchical and category
space seems to do better than the attribute model.

E. Full Scale Evaluation
We compare the performance of the proposed transfer

metric learning framework with standard metric learning meth-
ods when the train data is abundant (i.e. the knowledge
representation is learned in target set and no transfer learning
is carried out). This is a widely ignored evaluation setting
in transfer learning publications where the focus is only on
the case when the training data is scarce. Evaluating on the
large scale data set helps us to put the transfer metric learning
method in perspective to other methods that have the advantage
to adapt well to the target data distribution.

For that purpose, we use ASLAN view 2 which has 6000
pairs of similar and dissimilar actions, and we report the
performance in terms of accuracy and area under receiver
operating characteristic (ROC) curve and using 10-fold cross



TABLE II: Large scale evaluation on view 2 of the ASLAN data set.
Representation Learning in Source Hdns Cdns Adns Xdns

#Dimension 30 16 40 128
LDML 59.18± 0.98(62.16) 57.85± 1.02(60.57) 57.30± 0.58(60.85) 56.97± 0.69(60.15)

Representation Learning in Target HOG HOF HNF HOG+HOF+HNF

#Dimension 5000 5000 5000 3 x 5000√∑
(x1. ∗ x2) 58.55± 0.80(61.59) 56.82± 0.57(58.56) 58.87± 0.89(62.16) 60.08± 1.08(63.89)

Hellinger 53.22± 0.61(54.19) 53.77± 0.72(56.00) 53.77± 0.73(55.80) 54.83± 0.90(57.18)
Chi-Square 53.28± 0.69(54.42) 53.42± 0.62(55.79) 53.87± 0.72(55.97) 54.97± 0.97(57.13)
12 Similarities 59.78± 0.82(63.20) 56.68± 0.56(58.97) 59.47± 0.66(63.30) 60.88± 0.77(65.30)

validation as suggested in [23]. For an in-target representation
modeling, we compare to Kliper-Gross et al. [23] approach.
They propose to learn a BoW model of size 5000 for each of
the three features HOG, HOF, and HNF [24] to represent the
actions. They use 12 different similarity metrics to compare ac-
tions based on each of these representations and a combination
of the three. We report in Table II the results of their best single
similarity metric and the results of using the combination of
the 12 metrics as stated in [23].

We see in Table II that the performance of the different
semantic spaces in the transfer metric approach follows the
complexity level of semantics encoded in the model, with
the proposed hierarchical representation doing best, followed
by the category and attribute spaces. More importantly, the
transfer metric method performs as well on the target set
as the approach that uses a representation learned in target
domain. Even when 12 different similarities and 3 feature
representations are combined; the gain in performance of the
in-target method is 1.7% in accuracy. This is an impressive
performance for the transfer metric learning approach, bearing
in mind the diversity of the target compared to the source set
(432 to 16 classes) and that the data representation learned in
the source was never adapted to model changes in the target
domain.

V. CONCLUSION
We proposed a generic framework for transfer metric learn-

ing and showed the importance of knowledge representation
on different transfer options. High-level semantics have better
transfer properties and encode richer transferable knowledge
in comparison to low-level features. We introduced a hier-
archical representation that models the embedded structure
of category similarities in the attribute space. The proposed
hierarchical model performed best and was more resilient to
negative transfer effect. In addition, different metric learning
methods benefit from the proposed transfer framework. We
evaluated on very challenging settings where the target set is
much more complex and diverse in comparison to the source
set. Nonetheless, we showed that even when the knowledge
source is limited, transfer learning can still be beneficial if an
appropriate semantic representation is used. Finally, large-scale
evaluation showed impressive results of the transfer approach;
the performance is in line with methods using in target feature
representation learning.
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