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Abstract

Attribute based knowledge transfer has proven very suc-
cessful in visual object analysis and learning previously un-
seen classes. However, the common approach learns and
transfers attributes without taking into consideration the
embedded structure between the categories in the source
set. Such information provides important cues on the intra-
attribute variations. We propose to capture these variations
in a hierarchical model that expands the knowledge source
with additional abstraction levels of attributes. We also
provide a novel transfer approach that can choose the ap-
propriate attributes to be shared with an unseen class. We
evaluate our approach on three public datasets: aPascal,
Animals with Attributes and CUB-200-2011 Birds. The ex-
periments demonstrate the effectiveness of our model with
significant improvement over state-of-the-art.

1. Introduction

Semantic attributes describe the object’s shape, texture
and parts. They have the unique property of being both ma-
chine detectable and human understandable. By changing
the recognition task from labeling to describing, attributes
represent an adequate knowledge that can be easily trans-
ferred and shared with new visual concepts. Thus, they can
be used to recognize unseen classes with no training sam-
ples (i.e. zero-shot classification).

In the prevailing approach, attributes are learned from
all seen classes and then reused to describe or classify an
unseen one. However, this doesn’t account for the high
intra-attribute variance. Using all the seen classes helps in
learning visual semantics in a very abstract manner. Hence,
subsets of classes that share similar attributes cannot be dis-
tinguished easily. Eventually, the fine properties of the at-
tribute that help in discriminating a group from another are
lost when it is learned from all the classes. Consider for
example the attribute beak in Figure 1. The global attribute
model would learn that a beak is an elongated extension at
a certain position relative to the head; i.e. ignoring the dis-
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Figure 1: The high intra-attribute variance is better repre-
sented at different semantic levels of abstraction. This helps
in directing the transfer process to identify the most suitable
source of knowledge to share with a novel class.

tinctive long thin beak shape of the hummingbird species
or the wide curved-end of the albatross species. In other
words, the global model does not take advantage of the rich
information already available in the source dataset. This
results in transferring less discriminative attributes to the
novel class. On the other hand, capturing these specific
properties of beak relative to each subgroup of birds is ben-
eficial. It gives us the option to select the most proper type
of beak to share with the unseen class. Accordingly, know-
ing that both Gull and Albatross are Seabirds, it is intuitive
and probably more discriminative to describe the beak of
the California-Gull as an albatross-like-beak.

In this work we study the benefit of learning attributes
at different levels of abstraction, from the most specific that
distinguish one class from another to the most general that
are learned over all categories. We propose a novel hierar-
chical transfer model that can find the best type of attributes
to be shared with an unseen class. We evaluate the proposed
model on three challenging datasets each with a different
granularity of object categories. The evaluation shows that
significant gain can be achieved with our guided transfer
model with improvements from 22% and up to 32% over
state-of-the-art in zero-shot classification.



2. Related work

Our work relates to two fields in computer vision litera-
ture; the attribute-based recognition and hierarchical trans-
fer learning.

Since the introduction of semantic attributes [10, 9, 14],
they have gained increasing attention from the computer vi-
sion community. They represent an intermediate layer of
semantics and facilitate various tasks in visual recognition
like zero-shot learning [9, 8, 14], aiding object classification
and localization [24], relative attribute comparison [ 18] and
detection of unfamiliar classes [22]. However, in the pre-
vailing direction the attributes are learned in a global man-
ner from all classes available in the source [14, 18, 9, 16].
Such methods cannot cope with the high variations in each
of the attributes. Some approaches jointly model objects, at-
tributes and their correlations [24, 16] to handle such varia-
tions. Nonetheless, these correlations cannot be learned for
unseen classes since there is no training data.

Our approach is related to the work on learning class-
specific attributes. In [9] a set of attributes are learned per
class as an intermediate step for feature selection in order
to reduce attribute correlations. Yu et al. [25] propose to
learn data-driven attributes at the category-level to better
discriminate the classes. However, data-driven attributes
usually carry no semantic meaning; thus, their approach
requires user interaction when performing zero-shot learn-
ing. In [27] the concepts in ImageNet are augmented with
a set of semantic and data-driven attributes. These are used
along with the hierarchy to learn a better similarity met-
ric for content-based image retrieval. Correspondingly, we
propose to explicitly model the intra-attribute variations at
different abstraction levels. That is, rather than just using
class-specific attributes, we expand the notion of the at-
tribute from the most abstract to the most specific driven
by the embedded relations between the categories.

Additionally, hierarchies represent an attractive structure
for knowledge transfer and they have been exploited in var-
ious ways: parameter transfer [2 1, 20], representation trans-
fer [2] and bounding box annotations propagation [12]. Of
particular relevance to our work is the joint modeling of hi-
erarchy and attributes. In [1], a ranking classifier is trained
using attributes for label embedding; showing that using hi-
erarchical labels along global attributes as side information
improved the zero-shot performance. In the recent work of
[4], a hierarchy and exclusion graph is learned over the var-
ious object categories. The graph models binary relations
among the classes like mutual exclusion and overlap. They
also model similar relations between objects and global at-
tributes and use it for zero-shot classification.

We exploit the hierarchical structure of the categories in
two aspects. We leverage the hierarchy to automatically
propagate annotations and learn attributes at different lev-
els of abstraction. Then we use it in guiding the transfer

process to select the most promising knowledge source of
attributes to share with novel classes. To the best of our
knowledge, this has not been done before.

3. Approach

Hierarchical representation of concepts and objects is
part of the human understanding of the surrounding world.
We usually try to combine objects into certain groups based
on a common criteria like functionality or visual similar-
ity. This helps us to better learn the commonality as well
as the differences in and across groups. The key idea of our
approach is to take advantage of the embedded structure in
the object category space and extend the notion of global at-
tributes to include different levels of abstraction. The object
hierarchy groups the classes based on their overall visual
similarity; thus provides a natural way to guide the transfer
process to share information from the knowledge sources
that will most likely contain relative information.

In the following, we describe the three main steps of our
method. Starting with a set of classes, global attributes and
a hierarchy in the category space: (1) we automatically pop-
ulate the hierarchy with additional attributes; (2) learn these
attributes to capture subtle differences between similar cat-
egories; and finally, (3) use a hierarchy-guided transfer to
select the proper attributes to share with a novel class. We
start by defining the notation used throughout the paper.

Notation. Let C = {cj }X_, be a set of categories, where
a subset of these categories Q = {g;}7_, have training sam-
ples while the rest Z = {2}/, have none, andC = QU Z.
A set of semantic attributes A = {a,,}M_; describe all
classes in C. A directed acyclic graph H = (N, £) defines
a hierarchy over the classes, with nodes N = {n;}/_, and
edges £ = {e;; : n;,n; € N'}. An attribute a,, at node n;
is referred to as ay’.

3.1. Populating the hierarchy with attributes

To get the attribute description of the inner nodes we
exploit the hierarchy H by transferring the attributes an-
notation in a bottom-up approach from the seen classes Q
(leaf nodes) to the root. For example, the inner node Dog
(Figure 2a) has the attributes patches leveraged from the
child nodes Collie and Dalmatian, which in turn propagates
patches along other attributes up to node Carnivore. Then,
the active attributes of node n; are defined as

apd =1 if Jari =1 and n; € child(n;), (1)
where child(n) is the set of nodes of the subtree rooted with
n. Consequently, the root node of H will be described with
all attributes of Q. It’s important to note that the attribute
label propagation is used to find the active attributes at a
certain node and to guide the transfer process afterwards.
This does not change the underlying ground truth attribute
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Figure 2: Illustrative figure of our hierarchical transfer model.
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labels of samples whether it is class-based or image-based
annotation.

3.2. Learning at different levels of abstraction

To learn the various attributes classifiers, we first define
the support set of an attribute a,,,, i.e. the set of samples that
provide evidence of a,,. An attribute a,; in the hierarchy
has the support set supp(ay; ). The set contains samples
labeled with the attribute of that class (Ibl(ay7 ) : n; € Q),
and additionally the samples of its children which share the
same attribute with n;, i.e.

supp(apy) = |

n; €child(n;)

supp(ay;) UIbl(azi). ()

To capture the fine differences that characterize an at-
tribute at node n, we use a child-vs-parent learning scheme
[17]. The attribute a,¢ is learned with the following positive
(Tp) and negative (T7y) sets

Tp = supp(ay;) Ty =supp(ay?) — supp(aps), (3)
where n,, is the parent node of n.. For example, the attribute
paws of node Bear (Figure 2b) is supported by paws sam-
ples from the classes Polar-Bear and Grizzly-Bear. Then,
afﬁﬁg is learned to capture the differences against the other
paws samples from parent Carnivore. The root n,. of H has
no parent; hence {al} are learned in the standard 1-vs-all
scheme. In other words, the root attributes naturally map to
the commonly used global attributes in the literature.

3.3. Hierarchical transfer

Having the attributes learned at different levels of ab-
straction, we then leverage the hierarchy to guide the knowl-
edge transfer process and find the proper attributes to trans-
fer to novel classes.

Analyzing the recall and precision properties of the at-
tribute classifiers in H, we generally notice that the attribute
predictions towards the leaf level of H have higher precision
and lower recall than the ones towards the root of the hier-
archy, which are characterized with low precision and high
recall. This is expected from a learning scheme as the one
we use. While the lower levels capture the discriminative
small differences that distinguish a small group of classes
against another regarding an attribute (high precision), in
the higher levels of H, the common visual properties of the
attribute across a larger set of categories is learned (high
recall). Similar to [28], we find that combining classifiers
with such an opposite recall and precision primacy results in
an improved performance when compared to the constituent
classifiers. Furthermore, the combination of classifiers from
different levels in the hierarchy increases the robustness of
the final classifier against noise that might be produced by
the constituent classifiers.

Accordingly, for a novel class z; in H, we transfer the
attributes of its ancestors across the different levels of ab-

straction (e.g. afjff;‘mcat in Figure 2c), such that:

(a7} = apil] sn, (agi %)
. _ n;€anc(z;)
sz, (am|x) = S (a2 = ak]] ;

n; €anc(z;)

“)



where [[-]] is the Iverson bracket (i.e. [[P]] = 1 if condition
P is true and 0 otherwise), s, (al, |x) is the score of the at-
tribute a,, for node n given sample x, and anc(n) is the set
of ancestor nodes of n. Once the attributes are transferred to
z1, the final prediction score s(z;|x) of the z; category can
be defined by averaging over the attributes of that class as:

M
2 [lazh, = 1] s(azi|x)
s(z|x) = 2=2 = . (5)
5t = 1]

In the following, we refer to our Hierarchical Attribute
Transfer model as HAT.

4. Evaluation

We evaluate our model using three datasets. Each pro-
vides different characteristics regarding the granularity of
classes. This give us the chance to see how the performance
of the proposed HAT model varies with regards to the com-
plexity of the embedded knowledge in the source set. Next,
we present the three datasets, the hierarchy and the features
we extract from images to train the different attribute mod-
els.

Datasets. (1) The aPascal/aYahoo (aPaY) [9] contains
two subsets. The first (aP) uses 12,695 images and 20 cat-
egories from PASCAL VOC 2008 [6]. The second (aY)
has 12 disjoint classes and 2,644 images collected from the
Yahoo image search engine. Per-image labels of 64 binary
attributes are provided for both subsets. In the predefined
zero-shot split, aP is used for training and aY for testing.

(2) The Animals with Attributes (AwA) [14] consists of
30,475 images of 50 classes of animals. They are described
with 85 semantic attributes on the class level. The authors
provide a fixed split for zero-shot experiments. They select
40 classes for training and 10 for testing.

(3) The CUB-200-2011 Birds (CUB) [23] has 200 bird
classes and 11,788 images. Each image is labeled with 312
attributes. Unlike the previous two, there is no predefined
split for this dataset. For our experiments, we randomly
select 150 classes for training and 50 for testing.

Hierarchy. We learn the object hierarchies using the
WordNet ontology. That is, by querying the ontology with
the category labels we extract a tree that brings the classes
into a hierarchical ordering. Subsequently, we prune the
hierarchy to remove intermediate nodes that have a single
child.

Deep Features. Motivated by the impressive success of
deep Convolutional Neural Networks (CNN) [13], we en-
code the images using a CNN-based deep representation to
train the attribute classifiers. We use the CNN model CNN-
M2K provided by [3]. The CNN has 5 convolutional and 3
fully connected layers. The network is trained on ILSVRC-
2012 from [5] for object classification. We follow the best

Features ‘ aPaP  aPaY AwA CUB

Shallow | 84.12 7091 71.16 60.78
Deep 92.82 80.73 78.64 76.03

Table 1: Attribute prediction performance (mean AUC) us-
ing deep and shallow representations.

practice found in [3] to extract the deep representation. The
image is resized to 256 x 256. Then 5 crops of the image
at center and corners with their flipped versions are fed to
the CNN. The output of the seventh layer is extracted, sum-
pooled and L2-normalized to be used as our deep-features
to train the different models'. For all our attribute classi-
fiers, we use linear SVMs [7] with regularized logistic re-
gression. The cost parameter C is estimated using 5-folds
cross validation.

4.1. Attribute Prediction with Deep Features

We first evaluate the performance of the deep features
that we use in learning attribute classifiers. We compare
their performance with attributes learned using “shallow”
features. We use the precomputed features provided by [9]
and [14] as the “shallow” representation for aPaY and AwA
respectively. For CUB, we encode the images with Fisher
vectors based on SIFT and Color descriptors and use that
as the shallow representation. In aPaY, we consider two
setups: (i) within-category attribute prediction (aPaP), i.e.
the evaluation is done on the aPascal testing set; (ii) across-
category prediction (aPaY), i.e. we evaluate on the disjoint
aYahoo set. In both cases, the attributes are learned using
the aPascal training set. For AwA and CUB, we use the
zero-shot testing setups defined in the previous section.

In Table 1, the performance of the two representations in
terms of mean AUC under ROC of the attribute predictions
is shown. The deep-feature model constantly outperforms
its counterpart across all datasets with an increase between
7% to 15%. This high performance of the deep features in
attribute prediction is expected. CNNs automatically learn
to capture features with varying complexity at each layer.
While the lower layers learn features like edges and color
patches, the higher layers learn much complex structures of
the object like parts [26]. Many of these correspond directly
to semantic attributes which explains the impressive perfor-
mance of the deep representation using our simple linear
classifiers.

4.2. Zero-Shot Classification

To populate the hierarchy with attributes (Section 3.1),
our model requires class-based attribute descriptions.
Hence, for aPaY and CUB we average all attribute vectors

IThe deep features used in this work will be available on our website:
http://cvhci.anthropomatik.kit.edu
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Model ‘ Features | aPaY AwA CUB
DAP [15] shallow 19.1 414 -
IAP [15] shallow 169 422 -
AHLE [1] shallow - 435 [17.0]°
HEX [4] deep - 442 -
TMV-BLP [11] | shallow - 47.1 -
DAP deep 319 540 33.7
ENS deep 31.7 574 29.0
HAT (ours) deep 383 63.1 44.4
ENS-n deep 431  57.7 37.3
HAT-n (ours) deep 46.3 68.8 48.6

Table 2: Zero-shot multi-class accuracy on the three
datasets.

Model ‘ Features ‘ aPaY AwA CUB
DAP deep 873 885 822
ENS deep 85.6 88,5 895
HAT (ours) | deep 87.1  92.0 949

Table 3: Zero-shot mean AUC under ROC curve for the test
classes.

of each class to calculate the class-attribute occurrence ma-
trices. Then, the binary class-attribute notations are created
by thresholding the resulting occurrence matrix at its overall
mean value. Along with our Hierarchical Attribute Trans-
fer model (HAT), we also train two common baselines for
global attributes using our deep features: (i) The Direct At-
tribute Prediction model (DAP), where the class prediction
is formulated as a MAP estimation [14]; (ii) The Ensemble
model (ENS), that combines the predictions of the attributes
using a sum formulation similar to the one we use in Eq. 5
but based on global attributes [19].

HAT vs. state-of-the-art. In Table 2, we report the nor-
malized multi-class accuracy on the three test sets. Our
model outperforms the state-of-the-art on the three datasets
with a wide margin. In [!], a model that uses object hier-
archy as side information is used to learn attributes based
on Fisher vectors. In the recent work of [4], a hierarchical
model of objects is learned using deep features similar to
the one we use. While in [ 1] a transductive multi-view em-
bedding is learned using global attributes, word space and
low-level features. Nonetheless, our model improves over
the best state-of-the-art results by 19% (aPaY), 16% (AwA)
and 27% (CUB).

HAT vs. deep-feature baseline. Compared to our
strong baseline (DAP- and ENS-deep), HAT still performs
the best in terms of both multi-class accuracy and mean
AUC (Table 3). Figure 4 shows the highest ranking re-

2 Although we followed a similar split on CUB as in [1], the actual
classes may differ and the results may not be directly comparable.
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Figure 3: The performance of DAP and HAT in CUB with
varying number of classes in the source as demonstrated
with (a) multi-class accuracy and (b) mean AUC.
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sults obtained by the three models for each test class in the
AwA dataset. While distinctive classes like Chimpanzee
and Humpback-Whale are correctly classified by all mod-
els, both DAP and ENS confuse visually similar classes
that share many global attributes like Leopard & Persian-
Cat and Rat & Raccoon. Consequently, more wrong sam-
ples are ranked high by these models. To the contrary,
HAT learns the fine differences among the shared attributes
of theses classes which helps in discriminating them effi-
ciently. For example, HAT learns the differences between
the attributes of Big-Cat and Cat (Figure 2¢) which facili-
tates the separation among the novel classes Leopard and
Persian-Cat (Figure 4).

Furthermore, we find that normalizing the prediction
scores of the novel classes (Eq. 5) to have a zero mean and
unit standard deviation makes the scores more comparable.
This improves the accuracy of both the baseline (ENS-n)
and our model (HAT-n) with the latter surpassing the for-
mer. However, this requires that the test data is available
as a batch at the test time. The improvement in accuracy
of HAT relative to the baseline is higher on AwA and CUB
(19% and 30%) compared to aPaY (7%). This is expected
since the classes in aPaY are visually farther apart from each
other compared to the classes in AwA and CUB. Thus, it is
harder for the baseline models (DAP & ENS) to distinguish
such fine grained objects using the abstract global attributes.

Per-image vs. per-class attributes. aPaY and CUB pro-
vide attribute annotation at the image level which we used
to train the models in the previous experiments. We evaluate
on these two datasets using class-based attributes similar to
those in AWA. We notice that the accuracy of both the base-
line and HAT decreases in these settings. Where ENS has
22% and 29%, the HAT model achieves 33% and 40% on
aPaY and CUB. This seems to differ from the findings in
[15]. The reason could be related to the type of features
used. In [15] a set of shallow features are used which re-
quire a relatively larger number of samples to train good
attribute classifiers. This in turn results in noisy attribute
predictions if there are few image-based annotations of the
attribute. In comparison, using the deep features we can
learn better attribute classifiers even if the training data is
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Figure 4: The highest scoring results of DAP, ENS and HAT for each test class in AwWA. (Best viewed in color)

relatively sparse.

Unknown attributes of the novel class. Although this
evaluation setup is not possible with the global attribute
model, HAT enables us to carry out zero-shot recognition
even if the attribute description of the novel class is un-
known. To do that, we again leverage the hierarchy and
transfer the attribute description of the parent node to the
novel class. Using this setup, HAT achieves an accuracy of
21.1% (aPaY), 52.6% (AwA) and 25.9% (CUB). This drop
in performance is reasonable since we are transferring the
more generic attributes of the parent. Hence, confusion can

arise when multiple test classes share the same parent in the
hierarchy. Nonetheless, HAT makes it possible to perform
attribute-based zero-shot classification when only the novel
class label is available.

Source set complexity. In the following experiment,
we vary the complexity of the knowledge contained in the
source (the number of seen classes) compared to the target
(the unseen classes). This helps to have a better understand-
ing of the characteristics of the different models as the rich-
ness of the embedded information in the source changes.
We use the CUB dataset and start with a random set of 25



classes to be in the source. We gradually increase the source
set with additional 25 random classes. At each step, the rest
of the 200 classes is used as the target set to conduct zero-
shot classification.

In Figure 3 we see that when the source is relatively poor
and contains less structured knowledge, both DAP and HAT
performs at the same level. However, as the source get big-
ger and more complex HAT consistently outperforms DAP
with an increasingly wider margin. Unlike DAP that uses
a single layer of global attributes, HAT is able to take ad-
vantage of the complexity of information available in the
source. HAT captures the commonality among the cate-
gories and exploits it to learn and transfer more discrimi-
native attributes to distinguish the unseen categories.

5. Conclusion

In this paper, we present a simple yet very effective
model for zero-shot object recognition. Our model takes
advantage of the embedded structure in the category space
to learn attributes at different levels of abstraction. Further-
more, it exploits inter-class relations to provide a guided
knowledge transfer approach that can select and transfer the
expected relevant attributes to a novel class. The evalua-
tion on three challenging datasets shows the superior per-
formance of the proposed model over the state-of-the-art.

We are considering to extend our approach in different
directions. In the current model, we assume similar impor-
tance for the transferred attributes from the different layers
in the hierarchy. However, the confidence in the attributes
predictions and their relative relatedness to the novel class
differ through the different abstraction levels. Using adap-
tive weights when transferring attributes could improve the
model performance. Moreover, we considered only the an-
cestor nodes as a knowledge source. The siblings of a novel
class represent another promising option. Including them in
the transfer process may help in sharing more discrimina-
tive attributes.
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