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Figure 1: Slide Page Segmentation (SPaSe) dataset contains fine-grained annotations of 25 different classes for 2000 images.

Abstract

We introduce the first benchmark dataset for slide-page
segmentation. Presentation slides are one of the most
prominent document types used to exchange ideas across
the web, educational institutes and businesses. This doc-
ument format is marked with a complex layout which con-
tains a rich variety of graphical (e.g. diagram, logo), tex-
tual (e.g. heading, affiliation) and structural components
(e.g. enumeration, legend). This vast and popular knowl-
edge source is still unattainable by modern machine learn-
ing techniques due to lack of annotated data. To tackle
this issue, we introduce SPaSe (Slide Page Segmentation),
a novel dataset containing in total dense, pixel-wise anno-
tations of 25 classes for 2000 slides. We show that slide
segmentation reveals some interesting properties that char-
acterize this task. Unlike the common image segmentation
problem, disjoint classes tend to have a high overlap of re-
gions, thus posing this segmentation task as a multi-label
problem. Furthermore, many of the frequently encountered
classes in slides are location sensitive (e.g. title, footnote).
Hence, we believe our dataset represents a challenging and
interesting benchmark for novel segmentation models. Fi-
nally, we evaluate state-of-the-art segmentation networks
on our dataset and show that they are suitable for develop-
ing deep learning models without any need of pre-training.
The annotations will be released to the public to foster fur-
ther research on this interesting task.

1. Introduction

In page segmentation, the goal is to extract the seman-
tic components of a document pages (e.g. historical docu-
ments [3], magazines [12, 4] or scientific papers [11, 36])
represented in a digital format, i.e. images. These compo-
nents are usually related to the layout structure (e.g. headers
and footnotes) or to the page contents (e.g. tables and dia-
grams). In this work, we approach the page segmentation
task as a pixel-wise classification task where each pixel in
the page is classified into a subset of predefined categories.

Page segmentation is quite relevant to the popular im-
age segmentation task [16] where realistic images from in-
door or outdoor environment are segmented into one of
the defined object categories like person, bike or building.
Nonetheless, there are some key differences between these
two segmentation problems. For example, unlike image
segmentation where we usually deal with relatively large
scale objects like car, road, sky; in page segmentation we
need to handle a fine-grained set of classes that usually oc-
cupy only a tiny spatial area of the image like footnote, page
number or legend (Figure 1 left). Furthermore, the seman-
tics of components in image segmentation is location in-
variant (e.g. a car is a car regardless whether it appears on
the top, left or right part of the image). However, in page
segmentation some components may represent different se-
mantics depending on their spatial location or scale; for ex-
ample, Centrioles in Figure 1 (right) appears as both a Title
and a Bullet-Point. Additionally, we notice a high overlap
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of pixel labels in page segmentation where a pixel can be-
long to multiple categories at the same time; for example, in
Figure 1 (left) we have pixels that are part of four different
classes: Text, Bullet-Point, Table and Diagram.

In this paper, we focus on a special type of documents;
namely presentation slides. Slides are perhaps one of the
most popular formats to share information and ideas espe-
cially for educational and business purposes. For example,
the prominent slide sharing service SlideShare [26] claims
to have more than 400 thousand presentations uploaded
monthly [17] with an estimated 80 million unique visitor per
month [26]. Thus, in order to tap to this massive knowledge
base it is crucial to enable automatic analysis approaches for
this type of document format. Automatic document under-
standing and retrieval will enable millions of users to have
fast and convenient access to the sought information. More-
over, slides are used massively in many educational insti-
tutes, hence it is quite important to enable the students with
visual impairment to have a convenient and reliable access
to this knowledge source. Nonetheless, to the best of our
knowledge there is still no publicly available dataset that
would enable the vision research community to tackle this
important problem. The availability of such a dataset is vi-
tal to developing novel and accurate approaches for slides
automatic understanding and visual analysis. Additionally
a large-scale and diverse dataset is crucial to benchmark and
enable modern machine learning technique like deep learn-
ing.

We introduce SPaSe, a page segmentation dataset for
presentation slides, which augments the publicly available
Slideshare-1M dataset [5] with segmentation labels. Our
dataset has fine-grained annotations of 25 classes (e.g. ti-
tle, drawing and table) for 2000 slide images. The dataset
has a high intra-class variance where, for example, plots
and text can be both computer generated and handwritten
(Figure 1). Additionally, the collected slides are multilin-
gual where in addition to English there are languages like
French, Vietnamese and Romanian. This creates an inter-
esting and challenging benchmark for tasks like text seg-
mentation. While it is common in image segmentation to
have a single label annotation per pixel (e.g. [16, 13, 25]),
this is inadequate to slide segmentation due to the multi-
facet nature of the objects in the slides as explained earlier.
Thus, we provide multi-label annotation of individual pix-
els to capture the overlapping semantic representations of
objects. Furthermore, we define novel evaluation metrics to
quantify the performance of multi-label slide segmentation
approaches. In a thorough evaluation on SPaSe, we show
that our large-scale dataset enables deep learning methods
to be trained from scratch without the need of additional
data sources. Moreover, we analyze the correlation of the
defined categories and location and demonstrate the impact
of spatial information on segmentation performance. Fi-

nally, we make the annotations publicly available to the re-
search community and hope that our dataset will encourage
further research towards developing new and exciting meth-
ods for slide segmentation.

2. Related Work
Semantic image segmentation, which deals with seg-

menting objects in natural images, is a popular and impor-
tant task in computer vision with a variety of applications
in robotics, autonomous cars etc. This field shows a rapid
advancement in novel machine learning approaches, espe-
cially deep learning methods [37, 24, 23, 31, 38]. These
advancements were fueled by the availability of publicly
available benchmarks [25, 13, 16, 7, 29].

In comparison, page segmentation methods did not ben-
efit as much as semantic segmentation methods. In page
segmentation, we have for one the bottom-up [2, 20, 22, 15]
and the top-down approaches [19, 18], which use feature
engineering and mostly do not necessitate any training data
(e.g. by using unsupervised approaches like clustering or
thresholding). Deep learning models were introduced for
both segmenting scientific papers [35, 6, 36] and historical
documents [9, 8]. Even though we have some neural net-
work based models, some are shallow containing only few
layers [9, 8] and others compensate the lack of data by gen-
erating synthetic pages [36]. Most of the available datasets
provide either a small number of pages [11, 34, 36, 28] or
have a small number of classes [11] (see an overview in Ta-
ble 1) which make them not adequate for deep learning.

RDCL [4] is a layout recognition dataset, which con-
tains in total 7 training and 70 test pages from magazines
and journals. In this dataset various text based classes are
labeled: caption, credit, paragraph, page number, heading,
drop capital, footer and floating text. However, the number
of image-based classes is low and contains solely decora-
tion and images. The DSSE-200 [36] dataset considers six
classes: figures, tables, section headings, captions, list and
paragraphs, of which it provides bounding box annotations
of 200 pages. A larger dataset was introduced by Tao et
al. [34]. This dataset contains in total 244 pages extracted
from 35 English and Chinese e-books. Sectlabel [28] of-
fers bounding box annotations on a variety of text-based
classes for pages extracted from the pdf of scientific pa-
pers. The CS-150 and CS-Large [11] are publicly available
datasets including in total 150 and 3100 pages respectively.
While CS-150 only provides annotations of papers released
on three conferences, CS-Large contains randomly selected
papers from Semantic Scholar that have more than 9 cita-
tions. The annotations consist of bounding boxes of text
body, figures, tables and the corresponding figure captions.

In comparison to the presented datasets, we provide
pixel-wise annotations, where we allow our annotators to
provide more than one class annotation per pixel. To the
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Figure 2: Overview of the class distribution on our dataset. We split the classes by their root-categories: textual, image-based
and structural components.

best of our knowledge, SPaSe is the first page segmentation
dataset for presentation slides. Page segmentation on slides
offers a challenging task to segment regions of complex lay-
outs with a large variety of images and text formats.

3. Slide Page Segmentation Dataset
We introduce the first dataset for visual slide segmen-

tation. Presentation slides are one of the main document
formats shared across educational and business platforms.
Our goal is to enable automatic visual understanding for
this popular format by providing a suitable and challeng-
ing benchmark. Next, we provide detailed description of
the data collection and annotation process (Sec. 3.1) along
with an insightful analysis of the dataset features and char-
acteristics (Sec. 3.2).

3.1. Data Collection and Annotation

Categories. We start by defining the set of categories used
to annotate the slides’ pixels. For that purpose, we collab-
orate with an academic institute which offers aid services
for students with visually impairment. One of their main
activities is to provide detailed description of lecture ma-
terials like papers, exams and presentation slides. This is
usually achieved through manual effort of tens of trained
assistances. Theses assistances will go through the large
amount of slides and supply structured descriptions that are
tailored to the needs of the visually impaired in regards of
the slides structure and content. These descriptions repre-
sent an excellent data source to identify the most frequent
and important object types that are usually encountered in

the slides. Based on this data source and discussions with
the experts, we identified 25 relevant categories. In addition
to the Background class, these categories can be split into
3 main groups (see Figure 2): a) 14 text classes (e.g. Ti-
tle, Pseudocode and Footnote); b) 7 figure classes (e.g. Plot,
Map and Logo); c) 3 structural classes (e.g. Table, Diagram
and Enumeration);

Slides. We sample our slide images from the public
dataset for image retrieval Slideshare-1M provided by
Araujo et al. [5]. To ensure the diversity of the collected
samples, we select a maximum of one slide per presenta-
tion. This will help us to reduce overfitting problems when
training segmentation models that might simply memorize
specific templates present in the data. Moreover, we restrict
the sampled slides to have a minimum of 200 × 350 reso-
lution. In total, we collected 2000 slide images. These are
split into 1400 samples for training, 100 for validation, and
500 images for testing.

Annotation. We provide fine-grained annotations at
pixel-level for our 25 classes. This level of granularity is
needed for our type of data since many of the classes repre-
sent fine structures in the slides like Page Number or Date.
Using bounding boxes, for example, would not be adequate
since many of the background pixels will be wrongly an-
notated with the foreground class which will significantly
increase the noise in the training data. Additionally, we no-
tice that there is a high region overlap between the cate-
gories. For example, a table may contain enumerations and
a diagram may contain text, drawing or even tables in its
nodes (Figure 1 left). This property is especially present in



the structure classes. Hence, we decide to use multi-label
annotation in our data where a pixel may belong to multiple
overlapping categories at the same time. To that end, we de-
velop an annotation tool based on the one used for [7]. Each
slide image is first divided into fine superpixels using simple
linear iterative clustering (SLIC) [1]. SLIC leverages both
visual and spatial information of pixels in a weighted dis-
tance measure that controls the size and compactness of the
superpixels. Since we have very fine structures in our data,
we set the superpixels extracted by SLIC to be relatively
small (13000 superpixel per image). Finally, the output of
SLIC is used by the annotators to classify each of the su-
perpixels into the 25 classes. To show the performance of
this annotation method, we annotate 100 images by 3 differ-
ent annotators in a similar manner as [7, 32]. We obtain a
mean pairwise label agreement of 77% over the annotators,
similar to COCO-Stuff [7] with an agreement of 74% and
ADE-20K [32] with 67%.

3.2. Dataset Properties

3.2.1 Distribution of Images per Class

In Figure 2, we see the distribution of the classes over the
images in our dataset. Most of the classes appear in 10%
to 30% of the slides showing a relatively balanced distri-
bution. Two of the most prominent classes in more than
75% of the data are Text and Slide-Title. Among the least
frequent classes (in less than 6% of the data) are Footnote,
Code and Screenshots. Additionally, in around 12.3% of
the data we encounter handwritten text (e.g. Comments and
Handwritten Mathematical Expression (ME)). This is, for
example, one of the unique properties of slides in compar-
ison to other document formats like papers or magazines
where text is always typed.

3.2.2 Overlapping Regions

Next, we analyze the frequency of the pairwise occurrences
of different classes in our dataset (see Figure 3). In this
figure, we only show a subset of the classes that have a
strong overlap among each other. Not surprisingly, we have
a strong overlap with the text class, since especially struc-
ture classes like diagrams and tables contain text. Interest-
ingly, we have more legends assigned to plots than to maps.
We also have noticed that handwritten text (comments) are
often written on plots and tables to provide additional in-
formation for these complicated illustrations. Furthermore,
we have enumerations assigned to typed mathematical ex-
pressions, which are usually included in math homework
slides. Natural (realistic) images and drawings usually do
not have an overlap, but drawings are more likely to appear
within a diagram than realistic images. A further discussion
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Figure 3: Frequency of pair-wise Pixel Overlap between a
subset of the SPaSe classes.

of co-occurrence between our categories can be found in the
supplemental material.

3.2.3 Location Heat Maps

In Figure 4 we show the occurrence frequency in the page of
ten of our classes. We see that classes like title, slide num-
ber and logo have a strong position prior. Especially we
have text that changes its meaning dependent on its size and
position like title, slide number and footnote. For example,
numbers located in the page body are either mathematical
expressions or just belong to the text body. While, we con-
sider this to be page number if it is stand-alone text at the
corners of the page. The same we have for slide title at the
top and footnotes at the bottom of the image. In the case
of slide title we also notice the larger font that is typically
used, and thus simply classifying the text at the top as title
is not sufficient. Thus, the font size of the surrounding text
is also important to be able to classify slide titles.

Interestingly, as we see in the legend heat map, the leg-
ends are mostly positioned in the right and bottom side.
Also, we are able to recognize the programming code by
the short line breaks that we see in most programming lan-
guages. Not surprisingly the background is mostly located
at the borders of the page as we see in Figure 4a and due to
the positioning and the high frequency of titles less at the
top than at the bottom of the page.

3.2.4 SPaSe versus other Segmentation Datasets

We compare in Table 1 SPaSe with other publicly available
datasets used for page segmentation. We show the docu-
ment type offered in each dataset with the corresponding
number of pages and the number of classes for text, images
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Figure 4: Location Heat Maps

and structural elements (e.g. tables, lists). While CS-Large
has the largest number of pages, it also has a lowest number
of classes. It provides annotations for only 4 classes: fig-
ures, tables, image captions and text. In comparison, SPaSe
has the second highest number of pages, while providing
pixel-wise annotations of more than 20 classes. Moreover,
a key feature of our dataset in comparison to the others is
that we provide overlapping class annotations of pages. The
closest dataset in this regard is the semantic segmentation
dataset ADE-20k [32], which allows an overlap between
maximum of two subsets of classes (objects and parts of ob-
jects). In comparison to them, we allow any possible com-
bination of classes, especially since multiple combination
(i.e. more than 2) of region classes can occur.

3.2.5 Overlap per Pixel

Another aspect of the dataset is the amount of overlap, as
this influences some of our metrics where a prediction is
considered correct if and only if all classes of the pixels
are classified correctly. We show in Table 2 the number of
pixels in the entire dataset for different amount of overlap.

Overlap 1 2 3 4 5
Number pixels 130M 65M 3.6M 180K 2K

Table 2: Number of pixels with an overlap between 1 and 5

As we see, we have 130M pixels (excluding the back-
ground class) with no overlap, and thus in these cases
one-class segmentation would have sufficed. However, in

around 70M pixels this would have failed, as we have an
overlap between at least one pair of classes. By far the
highest of the overlap is with an overlap of 2, where we
have 65M pixels, around a third of non-empty pixels in our
dataset. The maximum overlap that SPaSe has is 5, which
we have in around 2K pixels.

3.3. Evaluation Metrics

As explained earlier, in our special segmentation task
we have multi-label pixel-wise annotations. This is differ-
ent than the common segmentation problem where classes
are assumed to be mutually exclusive [25]. Hence, be-
sides the popular mean Intersection over Union (mIOU)
metric [16], we define three additional evaluation metrics
for multi-label segmentation, namely: mean balanced accu-
racy (mbACC), pixel accuracy (pAcc), and pixel intersec-
tion over union (pIOU). Let H , W and C be the height,
width of the image and the number of categories, respec-
tively. Then, Lk, P k ∈ {0, 1}H×W×C are the ground truth
annotations and predictions for image k.
Pixel Accuracy (pACC). We define the number of cor-
rectly labeled values for a pixel (i, j) in image k as: tki,j =∑
c
1[Lk,c

i,j = P k,c
i,j ]. Then the pixel accuracy for image k

is defined as the percentage of pixels which has an exact
match with ground truth annotations:

pAcck =
1

H ·W
∑
i,j

1[tki,j = C]. (1)

While this metric gives us an idea of the pixel-wise seg-
mentation accuracy it has the following drawbacks: 1) The



Type Dataset # Pages # Text Cls. # Image Cls. # Structure Cls. Overlapping Segm.

Magazines RDCL 2017 [12] 70 8 2 0 7

E-Books CM [34] 244 12 1 2 7

Papers

CS-150 [11] 150 2 2 0 7
DSSE-200 [36] 200 2 1 2 7
SectLabel [28] 347 20 1 2 7
CS-Large [11] 3100 2 2 0 7

Slides SPaSe (Ours) 2000 14 6 4 3

Table 1: Comparison of various datasets for page segmentation.

metric harshly punishes partially correct segmentation by
assigning a zero accuracy for pixels if one label is misclas-
sified; and 2) the metric might be biased towards the most
frequent annotations in case of unbalanced distribution of
classes.

Pixel Intersection over Union (pIOU). To tackle the first
drawback, we define the pIOU metric, which softens the
weight given for incorrect classifications:

pIOUk =
1

H ·W
∑
i,j

nki,j
ski,j − nki,j

, (2)

where ski,j =
∑
c
(Lk,c

i,j + P k,c
i,j ) and nki,j =

∑
c
1[Lk,c

i,j =

1 ∧ P k,c
i,j = 1]. This metric is conceptually similar to the

mIOU but for multi-label predictions at the pixel-level.

Mean Balanced Pixel Accuracy (mbAcc). The mbAcc
tackles the second drawback through using a class-based
weighted accuracy measure:

bAcckc =
∑

`∈{0,1}

(1− αc
`) ·

∑
i,j

1[Lk,c
i,j = ` ∧ Lk,c

i,j = P k,c
i,j ],

(3)
where the weights αc

` is proportional to the number of pixels
labeled with class c and label `. That is,

αc
` =

1

T
·
∑
k,i,j

1[Lk
i,j = `],

where T is the total number of pixels in the test split. Fi-
nally, the mean balanced Accuracy is obtained by averaging
the balanced accuracy across all classes:

mbAcck =
1

C

∑
c

bAcckc . (4)

4. Evaluation
4.1. Methods

Baselines. We consider two simple baselines for the
multi-label slide segmentation task: 1) Uniform: a baseline

that samples the output class of each pixel from a uniform
distribution over all possible classes; and 2) Background:
where the output class is set to the most frequent category,
i.e. the background class.

FCN-8s [27]. The Fully Convolutional Neural Network
(FCN) is a deep learning model for semantic segmentation
that consists of a VGG-based encoder [33] pretrained on
ImageNet [14], and a decoder with multiple upscore layers
for segmentation prediction.

FRRN [30]. Unlike previous deep models, the Fully
Resolutional ResNet (FRRN) leverages two processing
streams. While the first stream processes the input image
with progressively larger receptive fields, the second stream
leverages residual connections to keep the feature maps at a
high resolution.

DeepLab [10]. DeepLab consists of multiple atrous-
spatial convolution [21] layers to enlarge the receptive field,
but keeping the feature dimensions. These are used in a
pyramid pooling to extract features at multiple scales, thus
capturing small objects and image context.

Learning Setup. Since for the multi-label segmentation
task we need to predict multiple classes per pixel, we re-
place the softmax output layer in the previous deep models
with a sigmoid activation function and train these models
using binary cross entropy loss. We train all these models
for 50 epochs using the same optimizers as they were orig-
inally used for image segmentation in [27, 30, 10]. Then,
the model with the highest mIOU over validation set is se-
lected for final evaluation.

4.2. Slide Segmentation

Multi-Label Segmentation. In this experiment, we mea-
sure the performance of the variant methods in pixel-wise
multi-label slide segmentation. That is, each pixel is classi-
fied into a subset of the 25 categories defined in our dataset.

We show in Table 3 the results of the baselines in the first
section, while in the second one we show the performance
of the deep neural networks. We see that the baselines per-
form by far worse than the deep learning models; such that



Model mIOU pAcc pIOU mbAcc

Uniform 1.1 3.4 4.0 50.0
Background 2.5 61.6 61.6 50.0

FCN-8s [27] 20.0 66.2 73.5 62.0
FRRN-A [30] 28.4 69.5 73.8 67.0
FRRN-B [30] 30.9 71.2 75.3 68.5
FRRN-B [30] + Loc. 33.2 73.4 77.2 70.1
DeepLab [10] 34.1 76.5 80.3 71.2
DeepLab [10] + Loc. 35.8 77.4 81.2 72.6

Table 3: Multi-label Segmentation Results on our test set.

the neural architectures improve over the baselines between
17.5% (FCN) and 33.3% (DeepLab) in terms of mIOU.

FRRN mIOU pAcc mAcc

Uniform 29.8 50.0 50.0
Background 41.8 83.7 50.0

FCN [27] 80.7 93.7 90.4
FRRN-A [30] 80.4 93.7 88.9
FRRN-B [30] 83.2 94.6 91.7
DeepLab [10] 82.6 94.5 90.5

Table 4: Text Detection

The FCN-8s tackles the downsampling of the feature
maps through so called upscore layers, which however, have
difficulty in capturing fine-grained structures. Both FRRN
versions were able to outperform the mIOU achieved by
FNC-8s. The deeper FRRN-B was able to improve the
mIOU by 2% in comparison to the shallower FRRN-A. On
the other hand, DeepLab achieved the highest performance
with 34.1%, further improving over FRRN-B with an ad-
ditional 3%. Finally, we notice that the difference between
FRRN-B and DeepLab in mIOU is smaller than in pIOU
and pAcc. This shows that the gain was mostly influenced
by improvements to the most frequent classes. In compari-
son, we notice that FRRN-A performance boost over FCN-
8s is mainly due to better segmentation of the less frequent
classes as depicted by the higher gain in mbAcc compared
to pAcc.

Since convolution layers are partially translation invari-
ant, our models cannot use the location information, which
are important in our location variant classes. Thus, we
tackle this problem by concatenating a 2-channel map (x
and y positions) to our input image with the location of
each pixel. This simple modification improved the DeepLab
model to an mIOU of 35.8% and FRRN-B to 33.2% (see
DeepLab+Loc. and FRRN-B+Loc in Table 3).

FRRN mIOU pAcc mAcc

Uniform 4.6 16.7 16.7
Background 14.3 86.1 16.7

FCN [27] 39.4 87.9 52.1
FRRN-A [30] 44.1 90.8 52.2
FRRN-B [30] 47.2 91.6 56.4
DeepLab [10] 50.7 91.8 63.5

Table 5: Graphics Segmentation

Text and Graphics Segmentation. Next, we explore
other popular page segmentation tasks on our dataset: 1)
text detection (see Table 4) and 2) graphics segmentation
(see Table 5). The text detection task consists of classifying
each pixel into two classes: text and non-text. In compari-
son, graphics segmentation is a more difficult task, where
we classify each pixel into five different image classes:
drawings, realistic images, plots, maps and logos.

While the baselines have a low performance of only
41.8% for the two-class segmentation task and 14.3% for
graphics segmentation, the deep learning models improve
results by more than 40% and 30% respectively. We see in
Table 4 that FRRN-B has the best results on the text detec-
tion task, while DeepLab outperforms it for graphics seg-
mentation. The residual stream architecture of FRRN-B is
able to keep the feature maps to a constant size. Thus, it is
able to segment fine structured objects like the text class. In
comparison, DeepLab uses a pyramid of different sizes of
receptive fields. This leads to better segmentation of con-
tinuous homogeneous regions that characterize the graphi-
cal classes. However, on the other hand, this also leads to
worse performance in capturing the fine details of text.

Qualitative Results. Finally, in Figure 5 we show some
example slides (left) with both ground truth annotations
(middle) and predictions (right) on the multi-label task. We
see that DeepLab was able to recognize difficult classes like
plot, table, diagram and code correctly. However, it has
some difficulties to get the exact borders for fine structures
like the arrows of the diagram (see last image in Figure 5).
Also, it has some difficulties to segment the right most node
at the top of the diagram probably due to the short interrup-
tion, especially as the text of the node was detected. The
programming code was segmented and classified correctly
as can be seen in the second row. The text classes are mostly
correctly segmented with some small exceptions.

5. Conclusion
In this work, we introduce the first dataset for pixel-wise

slide page segmentation SPaSe. We annotated in total 2000
slide images, which are labeled with 25 different classes
including 3 structural and 7 image based classes. Additiona-
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Figure 5: Slide examples along with ground truth annotations and predictions produced by our best multi-label model.

lly, we provide a thorough analysis of the data proper-
ties and unique features. In the evaluation, we establish
some strong baselines and demonstrate the suitability of our
dataset for developing deep learning model from scratch.
Moreover, we show that our classes are partially location
variant and thus, including pixel spatial location leads to
improved segmentation results.
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