Subsection 1.6.1 Additional homework
ΒΆHomework 1.6.1.1.
For \(e_j \in \Rn \) (a standard basis vector), compute
- \(\| e_j \|_2 = \) 
- \(\| e_j \|_1 = \) 
- \(\| e_j \|_\infty = \) 
- \(\| e_j \|_p = \) 
Homework 1.6.1.2.
For \(I \in \Rnxn \) (the identity matrix), compute
- \(\| I \|_1 = \) 
- \(\| I \|_\infty = \) 
- \(\| I \|_2 = \) 
- \(\| I \|_p = \) 
- \(\| I \|_F = \) 
Homework 1.6.1.3.
Let \(D = \left( \begin{array}{c c c c} \delta_0 \amp 0 \amp \cdots \amp 0 \\ 0 \amp \delta_1 \amp \cdots \amp 0 \\ \vdots \amp \ddots \amp \ddots \amp 0 \\ 0 \amp 0 \amp \cdots \amp \delta_{n-1} \end{array} \right) \) (a diagonal matrix). Compute
- \(\| D \|_1 = \) 
- \(\| D \|_\infty = \) 
- \(\| D \|_p = \) 
- \(\| D \|_F = \) 
Homework 1.6.1.4.
Let \(x = \left( \begin{array}{c} x_0 \\ \hline x_1 \\ \hline \vdots \\ \hline x_{N-1} \end{array} \right) \) and \(1 \leq p \lt \infty \) or \(p = \infty \text{.}\)
ALWAYS/SOMETIMES/NEVER: \(\| x_i \|_p \leq \| x \|_p \text{.}\)
Homework 1.6.1.5.
For
compute
- \(\| A \|_1 = \) 
- \(\| A \|_\infty =\) 
- \(\| A \|_F = \) 
Homework 1.6.1.6.
For \(A \in \C^{m \times n} \) define
- TRUE/FALSE: This function is a matrix norm. 
- How can you relate this norm to the vector 1-norm? 
- TRUE/FALSE: For this norm, \(\| A \| = \| A^H \| \text{.}\) 
- TRUE/FALSE: This norm is submultiplicative. 
Homework 1.6.1.7.
Let \(A \in \mathbb C^{m \times n} \text{.}\) Partition
Prove that
- \(\| A \|_F = \| A^T \|_F \text{.}\) 
- \(\| A \|_F = \sqrt{ \| a_0 \|_2^2 + \| a_1 \|_2^2 + \cdots + \| a_{n-1} \|_2^2 } \text{.}\) 
- \(\| A \|_F = \sqrt{ \| \widetilde a_0 \|_2^2 + \| \widetilde a_1 \|_2^2 + \cdots + \| \widetilde a_{m-1} \|_2^2 } \text{.}\) 
Note that here \(\widetilde a_i = ( \widetilde a_i^T )^T \text{.}\)
Homework 1.6.1.8.
Let \(x \in \Rm \) with \(\| x \|_1 = 1 \text{.}\)
TRUE/FALSE: \(\| x \|_2 = 1 \) if and only if \(x = \pm e_j \) for some \(j \text{.}\)
Obviously, if \(x = e_j \) then \(\| x \|_1 = \| x |_2 = 1 \text{.}\)
Assume \(x \neq e_j \text{.}\) Then \(\vert \chi_i \vert \lt 1 \) for all \(i \text{.}\) But then \(\| x \|_2 = \sqrt{ \vert \chi_0 \vert^2 + \cdots + \vert \chi_{m-1} \vert^2 } \lt \sqrt {\vert \chi_0 \vert + \cdots + \vert \chi_{m-1} \vert } = \sqrt{1} = 1. \)
Homework 1.6.1.9.
Prove that if \(\| x \|_\nu \leq \beta \| x \|_\mu \) is true for all \(x \text{,}\) then \(\| A \|_\nu \leq \beta \| A \|_{\mu,\nu} \text{.}\)
