Publications

Spiral: Fast, High-Rate Single-Server PIR via FHE Composition

Samir Jordan Menon and David J. Wu

43rd IEEE Symposium on Security and Privacy (Oakland), 2022

Resources

Abstract

We introduce the Spiral family of single-server private information retrieval (PIR) protocols. Spiral relies on a composition of two lattice-based homomorphic encryption schemes: the Regev encryption scheme and the Gentry-Sahai-Waters encryption scheme. We introduce new ciphertext translation techniques to convert between these two schemes and in doing so, enable new trade-offs in communication and computation. Across a broad range of database configurations, the basic version of Spiral simultaneously achieves at least a 4.5x reduction in query size, 1.5x reduction in response size, and 2x increase in server throughput compared to previous systems. A variant of our scheme, SpiralStreamPack, is optimized for the streaming setting and achieves a server throughput of 1.9 GB/s for databases with over a million records (compared to 200 MB/s for previous protocols) and a rate of 0.81 (compared to 0.24 for previous protocols). For streaming large records (e.g., a private video stream), we estimate the monetary cost of SpiralStreamPack to be only 1.9x greater than that of the no-privacy baseline where the client directly downloads the desired record.

BibTeX
@inproceedings{MW22,
  author     = {Samir Jordan Menon and David J. Wu},
  title      = {\textsc{Spiral}: Fast, High-Rate Single-Server {PIR} via {FHE} Composition},
  booktitle  = {{IEEE} {S\&P}},
  year       = {2022}
}