libflame  12600
Functions
FLASH_View.c File Reference

(r12600)

Functions

FLA_Error FLASH_Part_create_2x1 (FLA_Obj A, FLA_Obj *AT, FLA_Obj *AB, dim_t n_rows, FLA_Side side)
FLA_Error FLASH_Part_create_1x2 (FLA_Obj A, FLA_Obj *AL, FLA_Obj *AR, dim_t n_cols, FLA_Side side)
FLA_Error FLASH_Part_create_2x2 (FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj *ABL, FLA_Obj *ABR, dim_t n_rows, dim_t n_cols, FLA_Side side)
FLA_Error FLASH_Obj_adjust_views (FLA_Bool attach_buffer, dim_t offm, dim_t offn, dim_t m, dim_t n, FLA_Obj A, FLA_Obj *S)
FLA_Error FLASH_Obj_adjust_views_hierarchy (FLA_Bool attach_buffer, dim_t offm, dim_t offn, dim_t m, dim_t n, FLA_Obj A, FLA_Obj *S)
FLA_Error FLASH_Part_free_2x1 (FLA_Obj *AT, FLA_Obj *AB)
FLA_Error FLASH_Part_free_1x2 (FLA_Obj *AL, FLA_Obj *AR)
FLA_Error FLASH_Part_free_2x2 (FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj *ABL, FLA_Obj *ABR)
dim_t FLASH_Obj_scalar_length (FLA_Obj H)
dim_t FLASH_Obj_scalar_width (FLA_Obj H)
dim_t FLASH_Obj_scalar_min_dim (FLA_Obj H)
dim_t FLASH_Obj_scalar_max_dim (FLA_Obj H)
dim_t FLASH_Obj_scalar_vector_dim (FLA_Obj H)
dim_t FLASH_Obj_scalar_row_offset (FLA_Obj H)
dim_t FLASH_Obj_scalar_col_offset (FLA_Obj H)
dim_t FLASH_Obj_scalar_length_tl (FLA_Obj H)
dim_t FLASH_Obj_scalar_width_tl (FLA_Obj H)
FLA_Error FLASH_Obj_show (char *header, FLA_Obj H, char *elem_format, char *footer)
FLA_Error FLASH_Obj_show_hierarchy (FLA_Obj H, dim_t i, char *elem_format)

Function Documentation

FLA_Error FLASH_Obj_adjust_views ( FLA_Bool  attach_buffer,
dim_t  offm,
dim_t  offn,
dim_t  m,
dim_t  n,
FLA_Obj  A,
FLA_Obj S 
)
FLA_Error FLASH_Obj_adjust_views_hierarchy ( FLA_Bool  attach_buffer,
dim_t  offm,
dim_t  offn,
dim_t  m,
dim_t  n,
FLA_Obj  A,
FLA_Obj S 
)

References FLA_Obj_view::base, FLA_Obj_struct::buffer, FLA_Obj_struct::cs, FLA_Cont_with_1x3_to_1x2(), FLA_Cont_with_3x1_to_2x1(), FLA_Obj_col_offset(), FLA_Obj_elemtype(), FLA_Obj_length(), FLA_Obj_row_offset(), FLA_Obj_width(), FLA_Part_1x2(), FLA_Part_2x1(), FLA_Part_2x2(), FLA_Repart_1x2_to_1x3(), FLA_Repart_2x1_to_3x1(), FLASH_Obj_adjust_views_hierarchy(), FLASH_Obj_scalar_length_tl(), FLASH_Obj_scalar_width_tl(), FLA_Obj_struct::id, FLA_Obj_view::m_inner, FLA_Obj_view::n_inner, and FLA_Obj_struct::rs.

Referenced by FLASH_Obj_adjust_views(), and FLASH_Obj_adjust_views_hierarchy().

{
    FLA_Obj ATL, ATR,
            ABL, ABR;

    FLA_Obj STL, STR,
            SBL, SBR;

    // Base case.
    if ( FLA_Obj_elemtype( A ) == FLA_SCALAR )
    {
        // Repartition to exclude elements above and to the left of our
        // submatrix of interest.
        FLA_Part_2x2( A,    &ATL, &ATR,
                            &ABL, &ABR,    offm, offn, FLA_TL );
        FLA_Part_2x2( *S,   &STL, &STR,
                            &SBL, &SBR,    offm, offn, FLA_TL );

        // Overwrite the existing views with ones that have updated offsets.
        A  = ABR;
        *S = SBR;

        // Repartition to exclude elements below and to the right of our
        // submatrix of interest.
        FLA_Part_2x2( A,    &ATL, &ATR,
                            &ABL, &ABR,    m, n, FLA_TL );
        FLA_Part_2x2( *S,   &STL, &STR,
                            &SBL, &SBR,    m, n, FLA_TL );

        // Overwrite the existing view of S with the view of A so that S
        // Refers to the correct base object.
        A  = ATL;
        *S = STL;

        // Adjust the _inner fields in the view to reflect the number of
        // elements we have in each dimension.
        S->m_inner = m;
        S->n_inner = n;

        // Copy over buffer, stride, and object ID information if requested.
        if ( attach_buffer )
        {
            // Copy over the address of the numerical data buffer and its
            // corresponding row and column strides. This is obviously
            // necessary since we are creating a hierarchial view into an
            // existing hierarhical matrix, not a separate/new matrix
            // altogether.
            S->base->buffer = A.base->buffer;
            S->base->rs     = A.base->rs;
            S->base->cs     = A.base->cs;

            // Copy over the id field of the original matrix. This is used
            // by SuperMatrix to distinguish between distinct hierarchical
            // matrices. Since again, we are not creating a new matrix, we
            // will use the original object's id value.
            S->base->id = A.base->id;
        }
    }
    else // if ( FLA_Obj_elemtype( A ) == FLA_MATRIX )
    {
        FLA_Obj AL,  AR,       A0,  A1,  A2;

        FLA_Obj SL,  SR,       S0,  S1,  S2;

        FLA_Obj A1T,           A01,
                A1B,           A11,
                               A21;

        FLA_Obj S1T,           S01,
                S1B,           S11,
                               S21;
        dim_t b_m_full;
        dim_t b_n_full;
        dim_t offm_relA;
        dim_t offn_relA;
        dim_t offm_abs;
        dim_t offn_abs;
        dim_t offm_cur;
        dim_t offn_cur;
        dim_t offm_rem;
        dim_t offn_rem;
        dim_t offm_next;
        dim_t offn_next;
        dim_t m_next;
        dim_t n_next;
        dim_t m_ahead;
        dim_t n_ahead;
        dim_t m_behind;
        dim_t n_behind;

        // Acquire the scalar length and width of the top-left (full) block
        // at the current hierarchical level.
        b_m_full = FLASH_Obj_scalar_length_tl( A );
        b_n_full = FLASH_Obj_scalar_width_tl( A );
/*
printf( "-----------------\n" );
printf( "b_m/n_full:    %d %d\n", b_m_full, b_n_full );
printf( "offm/n:        %d %d\n", offm, offn );
printf( "r/c offsets:   %d %d\n", FLA_Obj_row_offset( A ), FLA_Obj_col_offset( A ) );
*/      
        // Compute the offsets for the top-left corner of the submatrix of
        // interest relative to the view at the current level of the
        // hierarchy of A.
        offm_relA = offm / b_m_full - FLA_Obj_row_offset( A );
        offn_relA = offn / b_n_full - FLA_Obj_col_offset( A );

        // Compute the offsets for the top-left corner of the submatrix of
        // interest in absolute units, from the top-left edge of the 
        // overall allocated matrix. This will be used to partition into S
        // Since its view has (presumably) not yet been changed since it
        // was created.
        offm_abs  = offm / b_m_full;
        offn_abs  = offn / b_n_full;
/*
printf( "offm/n_relA:   %d %d\n", offm_relA, offn_relA );
printf( "offm/n_abs:    %d %d\n", offm_abs, offn_abs );
*/
        // Repartition to exclude blocks above and to the left of our
        // submatrix of interest.
        FLA_Part_2x2( A,    &ATL, &ATR,
                            &ABL, &ABR,    offm_relA, offn_relA, FLA_TL );
        FLA_Part_2x2( *S,   &STL, &STR,
                            &SBL, &SBR,    offm_abs, offn_abs, FLA_TL );
/*
printf( "ABR.offm/n     %d %d\n", FLA_Obj_row_offset( ABR ), FLA_Obj_col_offset( ABR ) );
printf( "ABR is         %d %d\n", FLA_Obj_length( ABR ), FLA_Obj_width( ABR ) );
printf( "SBR.offm/n     %d %d\n", FLA_Obj_row_offset( SBR ), FLA_Obj_col_offset( SBR ) );
printf( "SBR is         %d %d\n", FLA_Obj_length( SBR ), FLA_Obj_width( SBR ) );
*/
        // Overwrite the existing views with ones that have updated offsets
        // (for this level in the hierarchy).
        A = ABR;
        *S = SBR;

        // Compute the new offsets within SBR, which is the remaining
        // distance after you subtract out the distance spanned by the
        // partitioning we just did.
        offm_rem = offm - offm_abs * b_m_full;
        offn_rem = offn - offn_abs * b_n_full;

//printf( "offm/n_rem:    %d %d\n", offm_rem, offn_rem );

        // Compute a new set of offsets corresponding to the bottom-right
        // edge of the desired submatrix. We'll use this to partition away
        // the remaining (bottom and right) parts of the FLASH matrix at
        // this level.
        offm_cur = ( offm_rem + m ) / b_m_full;
        offn_cur = ( offn_rem + n ) / b_n_full;
        offm_cur += ( (offm_rem + m) % b_m_full ? 1 : 0 );
        offn_cur += ( (offn_rem + n) % b_n_full ? 1 : 0 );

//printf( "offm/n_cur:    %d %d\n", offm_cur, offn_cur );

        // Repartition to exclude blocks below and to the right of our
        // submatrix of interest.
        FLA_Part_2x2( A,    &ATL, &ATR,
                            &ABL, &ABR,    offm_cur, offn_cur, FLA_TL );
        FLA_Part_2x2( *S,   &STL, &STR,
                            &SBL, &SBR,    offm_cur, offn_cur, FLA_TL );
/*
printf( "ATL.offm/n     %d %d\n", FLA_Obj_row_offset( ATL ), FLA_Obj_col_offset( ATL ) );
printf( "ATL is         %d %d\n", FLA_Obj_length( ATL ), FLA_Obj_width( ATL ) );
printf( "STL.offm/n     %d %d\n", FLA_Obj_row_offset( STL ), FLA_Obj_col_offset( STL ) );
printf( "STL is         %d %d\n", FLA_Obj_length( STL ), FLA_Obj_width( STL ) );
*/

        // Overwrite the existing views with ones that have updated offsets
        // (for this level in the hierarchy).
        A = ATL;
        *S = STL;

        // Adjust the _inner fields in the view to reflect the number of
        // elements we will eventually have in each dimension.
        S->m_inner = m;
        S->n_inner = n;

        // Initialize a counter that keeps track of the n offset relative to
        // the top-left most edge of the submatrix of interest.
        n_behind = 0;

        FLA_Part_1x2(  A,    &AL,  &AR,      0, FLA_LEFT );
        FLA_Part_1x2( *S,    &SL,  &SR,      0, FLA_LEFT );

        while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) )
        {
            FLA_Repart_1x2_to_1x3( AL,  /**/ AR,        &A0, /**/ &A1, &A2,
                                   1, FLA_RIGHT );
            FLA_Repart_1x2_to_1x3( SL,  /**/ SR,        &S0, /**/ &S1, &S2,
                                   1, FLA_RIGHT );

            // -------------------------------------------------------------

            // Set the n offset for the next levels of recursion based
            // on which panel of A we are in.
            if ( FLA_Obj_width( AL ) == 0 ) offn_next = offn_rem;
            else                            offn_next = 0;

            // Compute the number of columns left to be visited in the
            // submatrix of interset.
            n_ahead = n - n_behind;

            // Set the n dimensions for the next level of recursion
            // depending on whether the submatrix continues beyond the
            // current block.
            if ( offn_next + n_ahead > b_n_full ) n_next = b_n_full - offn_next;
            else                                  n_next = n_ahead;

            // Initialize a counter that keeps track of the m offset relative
            // to the top-left most edge of the submatrix of interest.
            m_behind = 0;

            FLA_Part_2x1( A1,    &A1T,
                                 &A1B,       0, FLA_TOP );
            FLA_Part_2x1( S1,    &S1T,
                                 &S1B,       0, FLA_TOP );

            while ( FLA_Obj_length( A1T ) < FLA_Obj_length( A1 ) )
            {
                FLA_Repart_2x1_to_3x1( A1T,               &A01,
                                    /* ** */            /* ** */
                                                          &A11,
                                       A1B,               &A21,        1, FLA_BOTTOM );
                FLA_Repart_2x1_to_3x1( S1T,               &S01,
                                    /* ** */            /* ** */
                                                          &S11,
                                       S1B,               &S21,        1, FLA_BOTTOM );

                // -------------------------------------------------------------

                // Set the m offset for the next levels of recursion based
                // on which block of A1 we are in.
                if ( FLA_Obj_length( A1T ) == 0 ) offm_next = offm_rem;
                else                              offm_next = 0;

                // Compute the number of rows left to be visited in the
                // submatrix of interset.
                m_ahead = m - m_behind;

                // Set the m dimensions for the next level of recursion
                // depending on whether the submatrix continues beyond the
                // current block.
                if ( offm_next + m_ahead > b_m_full ) m_next = b_m_full - offm_next;
                else                                  m_next = m_ahead;

//printf( "offm/n_next m/n_next:    %d %d %d %d\n", offm_next, offn_next, m_next, n_next );
                // Recursively call ourselves with new, smaller offsets
                // and the submatrix corresponding to FLASH blocks captured by ABR.
                FLASH_Obj_adjust_views_hierarchy( attach_buffer,
                                                  offm_next,
                                                  offn_next,
                                                  m_next,
                                                  n_next,
                                                  *FLASH_OBJ_PTR_AT( A11 ),
                                                  FLASH_OBJ_PTR_AT( S11 ) );

                // Increment m_behind to keep track of our absolute m offset.
                m_behind += m_next;

                // -------------------------------------------------------------

                FLA_Cont_with_3x1_to_2x1( &A1T,               A01,
                                                              A11,
                                        /* ** */           /* ** */
                                          &A1B,               A21,     FLA_TOP );
                FLA_Cont_with_3x1_to_2x1( &S1T,               S01,
                                                              S11,
                                        /* ** */           /* ** */
                                          &S1B,               S21,     FLA_TOP );
            }

            // Increment n_behind to keep track of our absolute n offset.
            n_behind += n_next;

            // -------------------------------------------------------------

            FLA_Cont_with_1x3_to_1x2( &AL,  /**/ &AR,        A0, A1, /**/ A2,
                                      FLA_LEFT );
            FLA_Cont_with_1x3_to_1x2( &SL,  /**/ &SR,        S0, S1, /**/ S2,
                                      FLA_LEFT );
        }
    }

    return FLA_SUCCESS;
}

References FLA_Cont_with_3x1_to_2x1(), FLA_Obj_elemtype(), FLA_Obj_length(), FLA_Part_2x1(), FLA_Repart_2x1_to_3x1(), and FLA_Obj_view::m_inner.

Referenced by FLA_Check_submatrix_dims_and_offset(), FLA_Obj_copy_view(), FLASH_Axpy_hierarchy(), FLASH_Copy_hierarchy(), FLASH_LU_find_zero_on_diagonal(), FLASH_Obj_create_conf_to(), FLASH_Obj_create_flat_conf_to_hier(), FLASH_Obj_scalar_max_dim(), FLASH_Obj_scalar_min_dim(), FLASH_Obj_scalar_vector_dim(), FLASH_Obj_show(), FLASH_Part_create_1x2(), FLASH_Part_create_2x1(), and FLASH_Part_create_2x2().

{
    FLA_Obj  HT,              H0,
             HB,              H1,
                              H2;
    FLA_Obj* H1p;

    dim_t b = 0;

    if ( FLA_Obj_elemtype( H ) == FLA_SCALAR )
        return FLA_Obj_length( H );

    if ( FLA_Obj_length( H ) == 0 )
        return 0;

    FLA_Part_2x1( H,    &HT,
                        &HB,            0, FLA_TOP );

    while ( FLA_Obj_length( HT ) < FLA_Obj_length( H ) )
    {
        FLA_Repart_2x1_to_3x1( HT,                &H0,
                            /* ** */            /* ** */
                                                  &H1,
                               HB,                &H2,        1, FLA_BOTTOM );

        /*------------------------------------------------------------*/

        H1p = FLASH_OBJ_PTR_AT( H1 );
        b += H1p->m_inner;

        /*------------------------------------------------------------*/

        FLA_Cont_with_3x1_to_2x1( &HT,                H0,
                                                      H1,
                                /* ** */           /* ** */   
                                  &HB,                H2,     FLA_TOP );
    }
  
    return b;
}

References FLA_Cont_with_1x3_to_1x2(), FLA_Obj_elemtype(), FLA_Obj_width(), FLA_Part_1x2(), FLA_Repart_1x2_to_1x3(), and FLA_Obj_view::n_inner.

Referenced by FLA_Check_submatrix_dims_and_offset(), FLA_Obj_copy_view(), FLASH_Apply_Q_UT_create_workspace(), FLASH_Axpy_hierarchy(), FLASH_CAQR_UT_inc_adjust_views(), FLASH_CAQR_UT_inc_solve(), FLASH_Copy_hierarchy(), FLASH_Obj_create_conf_to(), FLASH_Obj_create_flat_conf_to_hier(), FLASH_Obj_scalar_max_dim(), FLASH_Obj_scalar_min_dim(), FLASH_Obj_scalar_vector_dim(), FLASH_Part_create_1x2(), FLASH_Part_create_2x1(), FLASH_Part_create_2x2(), FLASH_QR_UT_inc_create_hier_matrices(), and FLASH_QR_UT_inc_solve().

{
    FLA_Obj  HL,    HR,       H0,  H1,  H2;
    FLA_Obj* H1p;

    dim_t b = 0;

    if ( FLA_Obj_elemtype( H ) == FLA_SCALAR )
        return FLA_Obj_width( H );

    if ( FLA_Obj_width( H ) == 0 )
        return 0;

    FLA_Part_1x2( H,    &HL,  &HR,      0, FLA_LEFT );

    while ( FLA_Obj_width( HL ) < FLA_Obj_width( H ) )
    {
        FLA_Repart_1x2_to_1x3( HL,  /**/ HR,        &H0, /**/ &H1, &H2,
                               1, FLA_RIGHT );

        /*------------------------------------------------------------*/

        H1p = FLASH_OBJ_PTR_AT( H1 );
        b += H1p->n_inner;

        /*------------------------------------------------------------*/

        FLA_Cont_with_1x3_to_1x2( &HL,  /**/ &HR,        H0, H1, /**/ H2,
                                  FLA_LEFT );
    }

    return b;
}
FLA_Error FLASH_Obj_show ( char *  header,
FLA_Obj  H,
char *  elem_format,
char *  footer 
)

References FLA_Obj_elemtype(), FLA_Obj_show(), FLASH_Obj_scalar_length(), FLASH_Obj_scalar_row_offset(), and FLASH_Obj_show_hierarchy().

{
    if ( FLA_Obj_elemtype( H ) == FLA_SCALAR )
    {
        // Display the flat object.
        FLA_Obj_show( header, H, elem_format, footer );
    }
    else
    {
        dim_t m_scalar;
        dim_t i_view;
        dim_t i_abs;
        dim_t offm_scalar;

        // We want to print all m rows in the FLASH view.
        m_scalar = FLASH_Obj_scalar_length( H );

        // Get the scalar offset of the overall FLASH view relative to the
        // top-left corner of the overall object to which the view belongs.
        offm_scalar = FLASH_Obj_scalar_row_offset( H );

//printf( "flash_view_show: %d\n", m_scalar );
//printf( "flash_view_show: %d\n", offm_scalar );
    
        printf( "%s\n", header );

        for ( i_view = 0; i_view < m_scalar; ++i_view )
        {
            // Convert the relative view index to an absolute index.
            i_abs = offm_scalar + i_view; 
        
            // Print the ith row of the FLASH object H.
            FLASH_Obj_show_hierarchy( H, i_abs, elem_format );
            printf( "\n" );
        }

        printf( "%s\n", footer );
    }

    return FLA_SUCCESS;
}
FLA_Error FLASH_Obj_show_hierarchy ( FLA_Obj  H,
dim_t  i,
char *  elem_format 
)

References FLA_Cont_with_1x3_to_1x2(), FLA_Obj_buffer_at_view(), FLA_Obj_col_stride(), FLA_Obj_datatype(), FLA_Obj_elemtype(), FLA_Obj_row_offset(), FLA_Obj_row_stride(), FLA_Obj_width(), FLA_Part_1x2(), FLA_Part_2x1(), FLA_Repart_1x2_to_1x3(), FLASH_Obj_scalar_length_tl(), and FLASH_Obj_show_hierarchy().

Referenced by FLASH_Obj_show(), and FLASH_Obj_show_hierarchy().

{
    if ( FLA_Obj_elemtype( H ) == FLA_SCALAR )
    {
        FLA_Datatype datatype = FLA_Obj_datatype( H );
        dim_t        m        = FLA_Obj_width( H );
        dim_t        rs       = FLA_Obj_row_stride( H );
        dim_t        cs       = FLA_Obj_col_stride( H );
        dim_t        j;

        // At this point, i is an absolute row index. We subtract out the
        // row offset of the view so that the index is relative to the view.
        i = i - FLA_Obj_row_offset( H );

        if ( datatype == FLA_INT )
        {
            int* buffer = FLA_Obj_buffer_at_view( H );

            for ( j = 0; j < m; ++j )
            {
                printf( elem_format, buffer[ j*cs + i*rs ] );
                printf( " " );
            }
        }
        else if ( datatype == FLA_FLOAT )
        {
            float* buffer = FLA_Obj_buffer_at_view( H );

            for ( j = 0; j < m; ++j )
            {
                printf( elem_format, buffer[ j*cs + i*rs ] );
                printf( " " );
            }
        }
        else if ( datatype == FLA_DOUBLE )
        {
            double* buffer = FLA_Obj_buffer_at_view( H );

            for ( j = 0; j < m; ++j )
            {
                printf( elem_format, buffer[ j*cs + i*rs ] );
                printf( " " );
            }
        }
        else if ( datatype == FLA_COMPLEX )
        {
            scomplex* buffer = FLA_Obj_buffer_at_view( H );

            for ( j = 0; j < m; ++j )
            {
                printf( elem_format, buffer[ j*cs + i*rs ].real,
                                     buffer[ j*cs + i*rs ].imag );
                printf( " " );
            }
        }
        else if ( datatype == FLA_DOUBLE_COMPLEX )
        {
            dcomplex* buffer = FLA_Obj_buffer_at_view( H );

            for ( j = 0; j < m; ++j )
            {
                printf( elem_format, buffer[ j*cs + i*rs ].real,
                                     buffer[ j*cs + i*rs ].imag );
                printf( " " );
            }
        }
        else
        {
            FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED );
        }
    }
    else
    {
        FLA_Obj  HT,
                 HB;
        FLA_Obj  HBL,  HBR,     H10, H11, H12;
        dim_t b_m_scalar;
        dim_t offm_local;
        dim_t i_next;

        // Get the scalar length of the top-left block.
        b_m_scalar = FLASH_Obj_scalar_length_tl( H );

#if 0
printf( "\n------------------------\n" );
printf( "b_m_scalar      %d\n", b_m_scalar );
printf( "i               %d\n", i );
#endif

        // Compute the offset of the matrix block, relative to the current
        // view, that contains the ith row of the matrix.
        offm_local      = ( i ) / b_m_scalar - FLA_Obj_row_offset( H );
        i_next          = ( i ) % b_m_scalar;

#if 0
printf( "row offset        %d\n", FLA_Obj_row_offset( H ) );
printf( "offm_local        %d\n", offm_local );
printf( "i_next            %d\n", i_next );
#endif

        FLA_Part_2x1( H,    &HT,
                            &HB,       offm_local, FLA_TOP );

        FLA_Part_1x2(  HB,    &HBL,  &HBR,      0, FLA_LEFT );

        while ( FLA_Obj_width( HBL ) < FLA_Obj_width( HB ) )
        {
            FLA_Repart_1x2_to_1x3( HBL,  /**/ HBR,        &H10, /**/ &H11, &H12,
                                   1, FLA_RIGHT );

            // ------------------------------------------------------

            FLASH_Obj_show_hierarchy( *FLASH_OBJ_PTR_AT( H11 ),
                                      i_next, elem_format );

            // ------------------------------------------------------

            FLA_Cont_with_1x3_to_1x2( &HBL,  /**/ &HBR,        H10, H11, /**/ H12,
                                      FLA_LEFT );
        }
    }

    return FLA_SUCCESS;
}
FLA_Error FLASH_Part_create_1x2 ( FLA_Obj  A,
FLA_Obj AL,
FLA_Obj AR,
dim_t  n_cols,
FLA_Side  side 
)

References FLA_Check_error_level(), FLA_free(), FLA_malloc(), FLA_Part_1x2_check(), FLASH_Obj_adjust_views(), FLASH_Obj_base_scalar_length(), FLASH_Obj_base_scalar_width(), FLASH_Obj_blocksizes(), FLASH_Obj_create_without_buffer_ext(), FLASH_Obj_datatype(), FLASH_Obj_depth(), FLASH_Obj_scalar_col_offset(), FLASH_Obj_scalar_length(), FLASH_Obj_scalar_row_offset(), and FLASH_Obj_scalar_width().

{
    FLA_Datatype dt_A;
    dim_t        m_A,  n_A;
    dim_t        m_A_base, n_A_base;
    dim_t        m_AL, n_AL;
    dim_t        m_AR, n_AR;
    dim_t        depth;
    dim_t*       b_m;
    dim_t*       b_n;
    dim_t        offm_A,  offn_A;
    dim_t        offm_AL, offn_AL;
    dim_t        offm_AR, offn_AR;

    if ( FLA_Check_error_level() == FLA_FULL_ERROR_CHECKING )
        FLA_Part_1x2_check( A,    AL, AR,     n_cols, side );

    // Safeguard: if n_cols > n, reduce n_cols to n.
    if ( n_cols > FLASH_Obj_scalar_width( A ) )
        n_cols = FLASH_Obj_scalar_width( A );

    // Acquire various properties of the hierarchical matrix object.
    dt_A     = FLASH_Obj_datatype( A );
    m_A      = FLASH_Obj_scalar_length( A );
    n_A      = FLASH_Obj_scalar_width( A );
    offm_A   = FLASH_Obj_scalar_row_offset( A );
    offn_A   = FLASH_Obj_scalar_col_offset( A );
    m_A_base = FLASH_Obj_base_scalar_length( A );
    n_A_base = FLASH_Obj_base_scalar_width( A );
    depth    = FLASH_Obj_depth( A );

    // Allocate a pair of temporary arrays for the blocksizes, whose lengths
    // are equal to the object's hierarchical depth.
    b_m = ( dim_t* ) FLA_malloc( depth * sizeof( dim_t ) );
    b_n = ( dim_t* ) FLA_malloc( depth * sizeof( dim_t ) );

    // Accumulate the blocksizes into the blocksize buffers.
    FLASH_Obj_blocksizes( A, b_m, b_n );

    // Adjust n_cols to be (n - n_cols) if the side specified is on the
    // right so that the right values get assigned below.
    if ( side == FLA_RIGHT ) n_cols = n_A - n_cols;

    // Set the dimensions of the partitions.
    m_AL = m_A;
    n_AL = n_cols;
    m_AR = m_A;
    n_AR = n_A - n_cols;

    // Set the offsets.
    offm_AL = offm_A + 0;
    offn_AL = offn_A + 0;
    offm_AR = offm_A + 0;
    offn_AR = offn_A + n_AL;
    
    // Create bufferless hierarhical objects that have the desired dimensions
    // for the views.
    FLASH_Obj_create_without_buffer_ext( dt_A, m_A_base, n_A_base, depth, b_m, b_n, AL );
    FLASH_Obj_create_without_buffer_ext( dt_A, m_A_base, n_A_base, depth, b_m, b_n, AR );

    // Recursively walk the hierarchy and adjust the views so that they
    // collectively refer to the absolute offsets given, and attach the
    // leaf-level numerical buffers of A to the new views.
    FLASH_Obj_adjust_views( TRUE, offm_AL, offn_AL, m_AL, n_AL, A, AL );
    FLASH_Obj_adjust_views( TRUE, offm_AR, offn_AR, m_AR, n_AR, A, AR );

    // Free the temporary blocksize buffers.
    FLA_free( b_m );
    FLA_free( b_n );

    return FLA_SUCCESS;
}
FLA_Error FLASH_Part_create_2x1 ( FLA_Obj  A,
FLA_Obj AT,
FLA_Obj AB,
dim_t  n_rows,
FLA_Side  side 
)

References FLA_Check_error_level(), FLA_free(), FLA_malloc(), FLA_Part_2x1_check(), FLASH_Obj_adjust_views(), FLASH_Obj_base_scalar_length(), FLASH_Obj_base_scalar_width(), FLASH_Obj_blocksizes(), FLASH_Obj_create_without_buffer_ext(), FLASH_Obj_datatype(), FLASH_Obj_depth(), FLASH_Obj_scalar_col_offset(), FLASH_Obj_scalar_length(), FLASH_Obj_scalar_row_offset(), and FLASH_Obj_scalar_width().

Referenced by FLASH_CAQR_UT_inc_solve(), and FLASH_QR_UT_inc_solve().

{
    FLA_Datatype dt_A;
    dim_t        m_A,  n_A;
    dim_t        m_A_base, n_A_base;
    dim_t        m_AT, n_AT;
    dim_t        m_AB, n_AB;
    dim_t        depth;
    dim_t*       b_m;
    dim_t*       b_n;
    dim_t        offm_A,  offn_A;
    dim_t        offm_AT, offn_AT;
    dim_t        offm_AB, offn_AB;

    if ( FLA_Check_error_level() == FLA_FULL_ERROR_CHECKING )
        FLA_Part_2x1_check( A,    AT,
                                  AB,     n_rows, side );

    // Safeguard: if n_rows > m, reduce n_rows to m.
    if ( n_rows > FLASH_Obj_scalar_length( A ) )
        n_rows = FLASH_Obj_scalar_length( A );

    // Acquire various properties of the hierarchical matrix view.
    dt_A     = FLASH_Obj_datatype( A );
    m_A      = FLASH_Obj_scalar_length( A );
    n_A      = FLASH_Obj_scalar_width( A );
    offm_A   = FLASH_Obj_scalar_row_offset( A );
    offn_A   = FLASH_Obj_scalar_col_offset( A );
    m_A_base = FLASH_Obj_base_scalar_length( A );
    n_A_base = FLASH_Obj_base_scalar_width( A );
    depth    = FLASH_Obj_depth( A );

    // Allocate a pair of temporary arrays for the blocksizes, whose lengths
    // are equal to the object's hierarchical depth.
    b_m = ( dim_t* ) FLA_malloc( depth * sizeof( dim_t ) );
    b_n = ( dim_t* ) FLA_malloc( depth * sizeof( dim_t ) );

    // Accumulate the blocksizes into the blocksize buffers.
    FLASH_Obj_blocksizes( A, b_m, b_n );

    // Adjust n_rows to be (m - n_rows) if the side specified is on the
    // bottom so that the right values get assigned below.
    if ( side == FLA_BOTTOM ) n_rows = m_A - n_rows;

    // Set the dimensions of the partitions.
    m_AT = n_rows;
    n_AT = n_A;
    m_AB = m_A - n_rows;
    n_AB = n_A;

    // Set the offsets.
    offm_AT = offm_A + 0;
    offn_AT = offn_A + 0;
    offm_AB = offm_A + m_AT;
    offn_AB = offn_A + 0;
    
    // Create bufferless hierarhical objects that have the desired dimensions
    // for the views.
    FLASH_Obj_create_without_buffer_ext( dt_A, m_A_base, n_A_base, depth, b_m, b_n, AT );
    FLASH_Obj_create_without_buffer_ext( dt_A, m_A_base, n_A_base, depth, b_m, b_n, AB );

/*
printf( "depth      %d\n", depth );
printf( "b_m/n[0]   %d %d\n", b_m[0], b_n[0] );
printf( "b_m/n_tl   %d %d\n", FLASH_Obj_scalar_length_tl( A ), FLASH_Obj_scalar_width_tl( A ) );
printf( "m/n_A_base %d %d\n", m_A_base, n_A_base );
printf( "offm/n_AT: %d %d\n", offm_AT, offn_AT );
printf( "m/n_AT:    %d %d\n", m_AT, n_AT );
printf( "offm/n_AB: %d %d\n", offm_AB, offn_AB );
printf( "m/n_AB:    %d %d\n", m_AB, n_AB );
printf( "A is       %d %d\n", FLA_Obj_length( A ), FLA_Obj_width( A ) );
printf( "AT is      %d %d\n", FLA_Obj_length( *AT ), FLA_Obj_width( *AT ) );
printf( "AB is      %d %d\n", FLA_Obj_length( *AB ), FLA_Obj_width( *AB ) );
*/

    // Recursively walk the hierarchy and adjust the views so that they
    // collectively refer to the absolute offsets given, and attach the
    // leaf-level numerical buffers of A to the new views.
    FLASH_Obj_adjust_views( TRUE, offm_AT, offn_AT, m_AT, n_AT, A, AT );
    FLASH_Obj_adjust_views( TRUE, offm_AB, offn_AB, m_AB, n_AB, A, AB );

    // Free the temporary blocksize buffers.
    FLA_free( b_m );
    FLA_free( b_n );

    return FLA_SUCCESS;
}
FLA_Error FLASH_Part_create_2x2 ( FLA_Obj  A,
FLA_Obj ATL,
FLA_Obj ATR,
FLA_Obj ABL,
FLA_Obj ABR,
dim_t  n_rows,
dim_t  n_cols,
FLA_Side  side 
)

References FLA_Check_error_level(), FLA_free(), FLA_malloc(), FLA_Part_2x2_check(), FLASH_Obj_adjust_views(), FLASH_Obj_base_scalar_length(), FLASH_Obj_base_scalar_width(), FLASH_Obj_blocksizes(), FLASH_Obj_create_without_buffer_ext(), FLASH_Obj_datatype(), FLASH_Obj_depth(), FLASH_Obj_scalar_col_offset(), FLASH_Obj_scalar_length(), FLASH_Obj_scalar_row_offset(), and FLASH_Obj_scalar_width().

Referenced by FLASH_Axpy_flat_to_hier(), FLASH_Axpy_hier_to_flat(), FLASH_Copy_flat_to_hier(), and FLASH_Copy_hier_to_flat().

{
    FLA_Datatype dt_A;
    dim_t        m_A_base, n_A_base;
    dim_t        m_A,  n_A;
    dim_t        m_ATL, n_ATL;
    dim_t        m_ABL, n_ABL;
    dim_t        m_ATR, n_ATR;
    dim_t        m_ABR, n_ABR;
    dim_t        depth;
    dim_t*       b_m;
    dim_t*       b_n;
    dim_t        offm_A,  offn_A;
    dim_t        offm_ATL, offn_ATL;
    dim_t        offm_ABL, offn_ABL;
    dim_t        offm_ATR, offn_ATR;
    dim_t        offm_ABR, offn_ABR;

    if ( FLA_Check_error_level() == FLA_FULL_ERROR_CHECKING )
        FLA_Part_2x2_check( A,   ATL, ATR,
                                 ABL, ABR,   n_rows, n_cols, side );

    // Safeguard: if n_rows > m, reduce n_rows to m.
    if ( n_rows > FLASH_Obj_scalar_length( A ) )
        n_rows = FLASH_Obj_scalar_length( A );

    // Safeguard: if n_cols > n, reduce n_cols to n.
    if ( n_cols > FLASH_Obj_scalar_width( A ) )
        n_cols = FLASH_Obj_scalar_width( A );

    // Acquire various properties of the hierarchical matrix object.
    dt_A     = FLASH_Obj_datatype( A );
    m_A      = FLASH_Obj_scalar_length( A );
    n_A      = FLASH_Obj_scalar_width( A );
    offm_A   = FLASH_Obj_scalar_row_offset( A );
    offn_A   = FLASH_Obj_scalar_col_offset( A );
    m_A_base = FLASH_Obj_base_scalar_length( A );
    n_A_base = FLASH_Obj_base_scalar_width( A );
    depth    = FLASH_Obj_depth( A );

    // Allocate a pair of temporary arrays for the blocksizes, whose lengths
    // are equal to the object's hierarchical depth.
    b_m = ( dim_t* ) FLA_malloc( depth * sizeof( dim_t ) );
    b_n = ( dim_t* ) FLA_malloc( depth * sizeof( dim_t ) );

    // Accumulate the blocksizes into the blocksize buffers.
    FLASH_Obj_blocksizes( A, b_m, b_n );

    // Adjust n_rows to be (m - n_rows) if the quadrant specified is on
    // the bottom so that the right values get assigned below. Do the same
    // for n_cols.
    if ( side == FLA_BL || side == FLA_BR ) n_rows = m_A - n_rows;
    if ( side == FLA_TR || side == FLA_BR ) n_cols = n_A - n_cols;

    // Set the dimensions of the partitions.
    m_ATL = n_rows;
    n_ATL = n_cols;
    m_ABL = m_A - n_rows;
    n_ABL = n_cols;
    m_ATR = n_rows;
    n_ATR = n_A - n_cols;
    m_ABR = m_A - n_rows;
    n_ABR = n_A - n_cols;

    // Set the offsets.
    offm_ATL = offm_A + 0;
    offn_ATL = offn_A + 0;
    offm_ABL = offm_A + m_ATL;
    offn_ABL = offn_A + 0;
    offm_ATR = offm_A + 0;
    offn_ATR = offn_A + n_ATL;
    offm_ABR = offm_A + m_ATL;
    offn_ABR = offn_A + n_ATL;
    
    // Create bufferless hierarhical objects that have the desired dimensions
    // for the views.
    FLASH_Obj_create_without_buffer_ext( dt_A, m_A_base, n_A_base, depth, b_m, b_n, ATL );
    FLASH_Obj_create_without_buffer_ext( dt_A, m_A_base, n_A_base, depth, b_m, b_n, ABL );
    FLASH_Obj_create_without_buffer_ext( dt_A, m_A_base, n_A_base, depth, b_m, b_n, ATR );
    FLASH_Obj_create_without_buffer_ext( dt_A, m_A_base, n_A_base, depth, b_m, b_n, ABR );

    // Recursively walk the hierarchy and adjust the views so that they
    // collectively refer to the absolute offsets given, and attach the
    // leaf-level numerical buffers of A to the new views.
    FLASH_Obj_adjust_views( TRUE, offm_ATL, offn_ATL, m_ATL, n_ATL, A, ATL );
    FLASH_Obj_adjust_views( TRUE, offm_ABL, offn_ABL, m_ABL, n_ABL, A, ABL );
    FLASH_Obj_adjust_views( TRUE, offm_ATR, offn_ATR, m_ATR, n_ATR, A, ATR );
    FLASH_Obj_adjust_views( TRUE, offm_ABR, offn_ABR, m_ABR, n_ABR, A, ABR );

    // Free the temporary blocksize buffers.
    FLA_free( b_m );
    FLA_free( b_n );

    return FLA_SUCCESS;
}
FLA_Error FLASH_Part_free_2x2 ( FLA_Obj ATL,
FLA_Obj ATR,
FLA_Obj ABL,
FLA_Obj ABR 
)