libflame
12600
|
Functions | |
void | bl1_saxpymt (trans1_t trans, int m, int n, float *alpha, float *a, int a_rs, int a_cs, float *b, int b_rs, int b_cs) |
void | bl1_daxpymt (trans1_t trans, int m, int n, double *alpha, double *a, int a_rs, int a_cs, double *b, int b_rs, int b_cs) |
void | bl1_caxpymt (trans1_t trans, int m, int n, scomplex *alpha, scomplex *a, int a_rs, int a_cs, scomplex *b, int b_rs, int b_cs) |
void | bl1_zaxpymt (trans1_t trans, int m, int n, dcomplex *alpha, dcomplex *a, int a_rs, int a_cs, dcomplex *b, int b_rs, int b_cs) |
void bl1_caxpymt | ( | trans1_t | trans, |
int | m, | ||
int | n, | ||
scomplex * | alpha, | ||
scomplex * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
scomplex * | b, | ||
int | b_rs, | ||
int | b_cs | ||
) |
References bl1_callocv(), bl1_caxpy(), bl1_ccopyv(), bl1_cfree(), bl1_does_conj(), bl1_does_notrans(), bl1_does_trans(), bl1_is_col_storage(), bl1_is_row_storage(), bl1_is_vector(), bl1_proj_trans1_to_conj(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by bl1_cgemm(), bl1_chemm(), bl1_csymm(), bl1_ctrmmsx(), bl1_ctrsmsx(), FLA_Axpy_external(), and FLA_Axpyt_external().
{ scomplex* a_begin; scomplex* b_begin; scomplex* a_temp; int inca_temp; int lda, inca; int ldb, incb; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; // Handle cases where A and B are vectors to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for vectors. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( trans, m, n, a_rs, a_cs ); ldb = 1; // multiplied by zero when n_iter == 1; not needed. incb = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, b_rs, b_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; ldb = b_cs; incb = b_rs; // Handle the transposition of A. if ( bl1_does_trans( trans ) ) { bl1_swap_ints( lda, inca ); } // An optimization: if B is row-major and if A is effectively row-major // after a possible transposition, then let's access the matrices by rows // instead of by columns for increased spatial locality. if ( bl1_is_row_storage( b_rs, b_cs ) ) { if ( ( bl1_is_col_storage( a_rs, a_cs ) && bl1_does_trans( trans ) ) || ( bl1_is_row_storage( a_rs, a_cs ) && bl1_does_notrans( trans ) ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); bl1_swap_ints( ldb, incb ); } } } if ( bl1_does_conj( trans ) ) { conj1_t conj = bl1_proj_trans1_to_conj( trans ); a_temp = bl1_callocv( n_elem ); inca_temp = 1; for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; b_begin = b + j*ldb; bl1_ccopyv( conj, n_elem, a_begin, inca, a_temp, inca_temp ); bl1_caxpy( n_elem, alpha, a_temp, inca_temp, b_begin, incb ); } bl1_cfree( a_temp ); } else // if ( !bl1_does_conj( trans ) ) { for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; b_begin = b + j*ldb; bl1_caxpy( n_elem, alpha, a_begin, inca, b_begin, incb ); } } }
void bl1_daxpymt | ( | trans1_t | trans, |
int | m, | ||
int | n, | ||
double * | alpha, | ||
double * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
double * | b, | ||
int | b_rs, | ||
int | b_cs | ||
) |
References bl1_daxpy(), bl1_does_notrans(), bl1_does_trans(), bl1_is_col_storage(), bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by bl1_dgemm(), bl1_dsymm(), bl1_dtrmmsx(), bl1_dtrsmsx(), FLA_Axpy_external(), and FLA_Axpyt_external().
{ double* a_begin; double* b_begin; int lda, inca; int ldb, incb; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; // Handle cases where A and B are vectors to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for vectors. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( trans, m, n, a_rs, a_cs ); ldb = 1; // multiplied by zero when n_iter == 1; not needed. incb = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, b_rs, b_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; ldb = b_cs; incb = b_rs; // Handle the transposition of A. if ( bl1_does_trans( trans ) ) { bl1_swap_ints( lda, inca ); } // An optimization: if B is row-major and if A is effectively row-major // after a possible transposition, then let's access the matrices by rows // instead of by columns for increased spatial locality. if ( bl1_is_row_storage( b_rs, b_cs ) ) { if ( ( bl1_is_col_storage( a_rs, a_cs ) && bl1_does_trans( trans ) ) || ( bl1_is_row_storage( a_rs, a_cs ) && bl1_does_notrans( trans ) ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); bl1_swap_ints( ldb, incb ); } } } for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; b_begin = b + j*ldb; bl1_daxpy( n_elem, alpha, a_begin, inca, b_begin, incb ); } }
void bl1_saxpymt | ( | trans1_t | trans, |
int | m, | ||
int | n, | ||
float * | alpha, | ||
float * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
float * | b, | ||
int | b_rs, | ||
int | b_cs | ||
) |
References bl1_does_notrans(), bl1_does_trans(), bl1_is_col_storage(), bl1_is_row_storage(), bl1_is_vector(), bl1_saxpy(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by bl1_sgemm(), bl1_ssymm(), bl1_strmmsx(), bl1_strsmsx(), FLA_Axpy_external(), and FLA_Axpyt_external().
{ float* a_begin; float* b_begin; int lda, inca; int ldb, incb; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; // Handle cases where A and B are vectors to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for vectors. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( trans, m, n, a_rs, a_cs ); ldb = 1; // multiplied by zero when n_iter == 1; not needed. incb = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, b_rs, b_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; ldb = b_cs; incb = b_rs; // Handle the transposition of A. if ( bl1_does_trans( trans ) ) { bl1_swap_ints( lda, inca ); } // An optimization: if B is row-major and if A is effectively row-major // after a possible transposition, then let's access the matrices by rows // instead of by columns for increased spatial locality. if ( bl1_is_row_storage( b_rs, b_cs ) ) { if ( ( bl1_is_col_storage( a_rs, a_cs ) && bl1_does_trans( trans ) ) || ( bl1_is_row_storage( a_rs, a_cs ) && bl1_does_notrans( trans ) ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); bl1_swap_ints( ldb, incb ); } } } for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; b_begin = b + j*ldb; bl1_saxpy( n_elem, alpha, a_begin, inca, b_begin, incb ); } }
void bl1_zaxpymt | ( | trans1_t | trans, |
int | m, | ||
int | n, | ||
dcomplex * | alpha, | ||
dcomplex * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
dcomplex * | b, | ||
int | b_rs, | ||
int | b_cs | ||
) |
References bl1_does_conj(), bl1_does_notrans(), bl1_does_trans(), bl1_is_col_storage(), bl1_is_row_storage(), bl1_is_vector(), bl1_proj_trans1_to_conj(), bl1_vector_dim(), bl1_vector_inc(), bl1_zallocv(), bl1_zaxpy(), bl1_zcopyv(), bl1_zero_dim2(), bl1_zfree(), and BLIS1_NO_TRANSPOSE.
Referenced by bl1_zgemm(), bl1_zhemm(), bl1_zsymm(), bl1_ztrmmsx(), bl1_ztrsmsx(), FLA_Axpy_external(), and FLA_Axpyt_external().
{ dcomplex* a_begin; dcomplex* b_begin; dcomplex* a_temp; int inca_temp; int lda, inca; int ldb, incb; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; // Handle cases where A and B are vectors to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for vectors. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( trans, m, n, a_rs, a_cs ); ldb = 1; // multiplied by zero when n_iter == 1; not needed. incb = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, b_rs, b_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; ldb = b_cs; incb = b_rs; // Handle the transposition of A. if ( bl1_does_trans( trans ) ) { bl1_swap_ints( lda, inca ); } // An optimization: if B is row-major and if A is effectively row-major // after a possible transposition, then let's access the matrices by rows // instead of by columns for increased spatial locality. if ( bl1_is_row_storage( b_rs, b_cs ) ) { if ( ( bl1_is_col_storage( a_rs, a_cs ) && bl1_does_trans( trans ) ) || ( bl1_is_row_storage( a_rs, a_cs ) && bl1_does_notrans( trans ) ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); bl1_swap_ints( ldb, incb ); } } } if ( bl1_does_conj( trans ) ) { conj1_t conj = bl1_proj_trans1_to_conj( trans ); a_temp = bl1_zallocv( n_elem ); inca_temp = 1; for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; b_begin = b + j*ldb; bl1_zcopyv( conj, n_elem, a_begin, inca, a_temp, inca_temp ); bl1_zaxpy( n_elem, alpha, a_temp, inca_temp, b_begin, incb ); } bl1_zfree( a_temp ); } else // if ( !bl1_does_conj( trans ) ) { for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; b_begin = b + j*ldb; bl1_zaxpy( n_elem, alpha, a_begin, inca, b_begin, incb ); } } }