libflame  12600
Functions
bl1_fnorm.c File Reference

(r12600)

Functions

void bl1_sfnorm (int m, int n, float *a, int a_rs, int a_cs, float *norm)
void bl1_dfnorm (int m, int n, double *a, int a_rs, int a_cs, double *norm)
void bl1_cfnorm (int m, int n, scomplex *a, int a_rs, int a_cs, float *norm)
void bl1_zfnorm (int m, int n, dcomplex *a, int a_rs, int a_cs, double *norm)

Function Documentation

void bl1_cfnorm ( int  m,
int  n,
scomplex a,
int  a_rs,
int  a_cs,
float *  norm 
)

References bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), BLIS1_NO_TRANSPOSE, scomplex::imag, and scomplex::real.

Referenced by FLA_Norm_frob().

{
    scomplex* a_ij;
    float     sum;
    int       lda, inca;
    int       n_iter;
    int       n_elem;
    int       i, j;

    // Return early if possible.
    if ( bl1_zero_dim2( m, n ) ) return;

    // Handle cases where A is a vector separately.
    if ( bl1_is_vector( m, n ) )
    {
        // Initialize with values appropriate for vectors.
        n_iter = 1;
        n_elem = bl1_vector_dim( m, n );
        lda    = 1; // multiplied by zero when n_iter == 1; not needed.
        inca   = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs );
    }
    else // matrix case
    {
        // Initialize with optimal values for column-major storage.
        n_iter = n;
        n_elem = m;
        lda    = a_cs;
        inca   = a_rs;
        
        // An optimization: if A is row-major, then let's access the matrix by
        // rows instead of by columns for increased spatial locality.
        if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            bl1_swap_ints( n_iter, n_elem );
            bl1_swap_ints( lda, inca );
        }
    }

    // Initialize the accumulator variable.
    sum = 0.0F;

    for ( j = 0; j < n_iter; j++ )
    {
        for ( i = 0; i < n_elem; i++ )
        {
            a_ij = a + i*inca + j*lda;
            sum += a_ij->real * a_ij->real + a_ij->imag * a_ij->imag;
        }
    }
    
    // Compute the norm and store the result.
    *norm = ( float ) sqrt( sum );
}
void bl1_dfnorm ( int  m,
int  n,
double *  a,
int  a_rs,
int  a_cs,
double *  norm 
)

References bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.

Referenced by FLA_Norm_frob().

{
    double*   a_ij;
    double    sum;
    int       lda, inca;
    int       n_iter;
    int       n_elem;
    int       i, j;

    // Return early if possible.
    if ( bl1_zero_dim2( m, n ) ) return;

    // Handle cases where A is a vector separately.
    if ( bl1_is_vector( m, n ) )
    {
        // Initialize with values appropriate for vectors.
        n_iter = 1;
        n_elem = bl1_vector_dim( m, n );
        lda    = 1; // multiplied by zero when n_iter == 1; not needed.
        inca   = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs );
    }
    else // matrix case
    {
        // Initialize with optimal values for column-major storage.
        n_iter = n;
        n_elem = m;
        lda    = a_cs;
        inca   = a_rs;
        
        // An optimization: if A is row-major, then let's access the matrix by
        // rows instead of by columns for increased spatial locality.
        if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            bl1_swap_ints( n_iter, n_elem );
            bl1_swap_ints( lda, inca );
        }
    }

    // Initialize the accumulator variable.
    sum = 0.0;

    for ( j = 0; j < n_iter; j++ )
    {
        for ( i = 0; i < n_elem; i++ )
        {
            a_ij = a + i*inca + j*lda;
            sum += (*a_ij) * (*a_ij);
        }
    }
    
    // Compute the norm and store the result.
    *norm = sqrt( sum );
}
void bl1_sfnorm ( int  m,
int  n,
float *  a,
int  a_rs,
int  a_cs,
float *  norm 
)

References bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.

Referenced by FLA_Norm_frob().

{
    float*    a_ij;
    float     sum;
    int       lda, inca;
    int       n_iter;
    int       n_elem;
    int       i, j;

    // Return early if possible.
    if ( bl1_zero_dim2( m, n ) ) return;

    // Handle cases where A is a vector separately.
    if ( bl1_is_vector( m, n ) )
    {
        // Initialize with values appropriate for vectors.
        n_iter = 1;
        n_elem = bl1_vector_dim( m, n );
        lda    = 1; // multiplied by zero when n_iter == 1; not needed.
        inca   = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs );
    }
    else // matrix case
    {
        // Initialize with optimal values for column-major storage.
        n_iter = n;
        n_elem = m;
        lda    = a_cs;
        inca   = a_rs;
        
        // An optimization: if A is row-major, then let's access the matrix by
        // rows instead of by columns for increased spatial locality.
        if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            bl1_swap_ints( n_iter, n_elem );
            bl1_swap_ints( lda, inca );
        }
    }

    // Initialize the accumulator variable.
    sum = 0.0F;

    for ( j = 0; j < n_iter; j++ )
    {
        for ( i = 0; i < n_elem; i++ )
        {
            a_ij = a + i*inca + j*lda;
            sum += (*a_ij) * (*a_ij);
        }
    }
    
    // Compute the norm and store the result.
    *norm = ( float ) sqrt( sum );
}
void bl1_zfnorm ( int  m,
int  n,
dcomplex a,
int  a_rs,
int  a_cs,
double *  norm 
)

References bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), BLIS1_NO_TRANSPOSE, dcomplex::imag, and dcomplex::real.

Referenced by FLA_Norm_frob().

{
    dcomplex* a_ij;
    double    sum;
    int       lda, inca;
    int       n_iter;
    int       n_elem;
    int       i, j;

    // Return early if possible.
    if ( bl1_zero_dim2( m, n ) ) return;

    // Handle cases where A is a vector separately.
    if ( bl1_is_vector( m, n ) )
    {
        // Initialize with values appropriate for vectors.
        n_iter = 1;
        n_elem = bl1_vector_dim( m, n );
        lda    = 1; // multiplied by zero when n_iter == 1; not needed.
        inca   = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs );
    }
    else // matrix case
    {
        // Initialize with optimal values for column-major storage.
        n_iter = n;
        n_elem = m;
        lda    = a_cs;
        inca   = a_rs;
        
        // An optimization: if A is row-major, then let's access the matrix by
        // rows instead of by columns for increased spatial locality.
        if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            bl1_swap_ints( n_iter, n_elem );
            bl1_swap_ints( lda, inca );
        }
    }

    // Initialize the accumulator variable.
    sum = 0.0;

    for ( j = 0; j < n_iter; j++ )
    {
        for ( i = 0; i < n_elem; i++ )
        {
            a_ij = a + i*inca + j*lda;
            sum += a_ij->real * a_ij->real + a_ij->imag * a_ij->imag;
        }
    }
    
    // Compute the norm and store the result.
    *norm = sqrt( sum );
}