libflame
12600
|
Functions | |
void | bl1_sfnorm (int m, int n, float *a, int a_rs, int a_cs, float *norm) |
void | bl1_dfnorm (int m, int n, double *a, int a_rs, int a_cs, double *norm) |
void | bl1_cfnorm (int m, int n, scomplex *a, int a_rs, int a_cs, float *norm) |
void | bl1_zfnorm (int m, int n, dcomplex *a, int a_rs, int a_cs, double *norm) |
void bl1_cfnorm | ( | int | m, |
int | n, | ||
scomplex * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
float * | norm | ||
) |
References bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), BLIS1_NO_TRANSPOSE, scomplex::imag, and scomplex::real.
Referenced by FLA_Norm_frob().
{ scomplex* a_ij; float sum; int lda, inca; int n_iter; int n_elem; int i, j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; // Handle cases where A is a vector separately. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for vectors. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix by // rows instead of by columns for increased spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } // Initialize the accumulator variable. sum = 0.0F; for ( j = 0; j < n_iter; j++ ) { for ( i = 0; i < n_elem; i++ ) { a_ij = a + i*inca + j*lda; sum += a_ij->real * a_ij->real + a_ij->imag * a_ij->imag; } } // Compute the norm and store the result. *norm = ( float ) sqrt( sum ); }
void bl1_dfnorm | ( | int | m, |
int | n, | ||
double * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
double * | norm | ||
) |
References bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by FLA_Norm_frob().
{ double* a_ij; double sum; int lda, inca; int n_iter; int n_elem; int i, j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; // Handle cases where A is a vector separately. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for vectors. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix by // rows instead of by columns for increased spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } // Initialize the accumulator variable. sum = 0.0; for ( j = 0; j < n_iter; j++ ) { for ( i = 0; i < n_elem; i++ ) { a_ij = a + i*inca + j*lda; sum += (*a_ij) * (*a_ij); } } // Compute the norm and store the result. *norm = sqrt( sum ); }
void bl1_sfnorm | ( | int | m, |
int | n, | ||
float * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
float * | norm | ||
) |
References bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by FLA_Norm_frob().
{ float* a_ij; float sum; int lda, inca; int n_iter; int n_elem; int i, j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; // Handle cases where A is a vector separately. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for vectors. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix by // rows instead of by columns for increased spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } // Initialize the accumulator variable. sum = 0.0F; for ( j = 0; j < n_iter; j++ ) { for ( i = 0; i < n_elem; i++ ) { a_ij = a + i*inca + j*lda; sum += (*a_ij) * (*a_ij); } } // Compute the norm and store the result. *norm = ( float ) sqrt( sum ); }
void bl1_zfnorm | ( | int | m, |
int | n, | ||
dcomplex * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
double * | norm | ||
) |
References bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), BLIS1_NO_TRANSPOSE, dcomplex::imag, and dcomplex::real.
Referenced by FLA_Norm_frob().
{ dcomplex* a_ij; double sum; int lda, inca; int n_iter; int n_elem; int i, j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; // Handle cases where A is a vector separately. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for vectors. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix by // rows instead of by columns for increased spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } // Initialize the accumulator variable. sum = 0.0; for ( j = 0; j < n_iter; j++ ) { for ( i = 0; i < n_elem; i++ ) { a_ij = a + i*inca + j*lda; sum += a_ij->real * a_ij->real + a_ij->imag * a_ij->imag; } } // Compute the norm and store the result. *norm = sqrt( sum ); }