libflame
12600
|
Functions | |
void | bl1_shemv (uplo1_t uplo, conj1_t conj, int m, float *alpha, float *a, int a_rs, int a_cs, float *x, int incx, float *beta, float *y, int incy) |
void | bl1_dhemv (uplo1_t uplo, conj1_t conj, int m, double *alpha, double *a, int a_rs, int a_cs, double *x, int incx, double *beta, double *y, int incy) |
void | bl1_chemv (uplo1_t uplo, conj1_t conj, int m, scomplex *alpha, scomplex *a, int a_rs, int a_cs, scomplex *x, int incx, scomplex *beta, scomplex *y, int incy) |
void | bl1_zhemv (uplo1_t uplo, conj1_t conj, int m, dcomplex *alpha, dcomplex *a, int a_rs, int a_cs, dcomplex *x, int incx, dcomplex *beta, dcomplex *y, int incy) |
void | bl1_chemv_blas (uplo1_t uplo, int m, scomplex *alpha, scomplex *a, int lda, scomplex *x, int incx, scomplex *beta, scomplex *y, int incy) |
void | bl1_zhemv_blas (uplo1_t uplo, int m, dcomplex *alpha, dcomplex *a, int lda, dcomplex *x, int incx, dcomplex *beta, dcomplex *y, int incy) |
void bl1_chemv | ( | uplo1_t | uplo, |
conj1_t | conj, | ||
int | m, | ||
scomplex * | alpha, | ||
scomplex * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
scomplex * | x, | ||
int | incx, | ||
scomplex * | beta, | ||
scomplex * | y, | ||
int | incy | ||
) |
References bl1_c0(), bl1_c1(), bl1_callocv(), bl1_caxpyv(), bl1_ccopyv(), bl1_ccreate_contigmr(), bl1_cfree(), bl1_cfree_contigm(), bl1_chemv_blas(), bl1_cscalv(), bl1_is_conj(), bl1_is_row_storage(), bl1_zero_dim1(), BLIS1_CONJUGATE, and BLIS1_NO_CONJUGATE.
Referenced by FLA_Eig_gest_il_opc_var1(), FLA_Eig_gest_il_opc_var2(), FLA_Eig_gest_iu_opc_var1(), FLA_Eig_gest_iu_opc_var2(), FLA_Eig_gest_nl_opc_var1(), FLA_Eig_gest_nl_opc_var2(), FLA_Eig_gest_nu_opc_var1(), FLA_Eig_gest_nu_opc_var2(), FLA_Hemv_external(), FLA_Hemvc_external(), FLA_Lyap_h_opc_var1(), FLA_Lyap_n_opc_var1(), FLA_Tridiag_UT_l_step_ofc_var2(), FLA_Tridiag_UT_l_step_ofc_var3(), FLA_Tridiag_UT_l_step_opc_var1(), FLA_Tridiag_UT_l_step_opc_var2(), and FLA_Tridiag_UT_l_step_opc_var3().
{ scomplex* a_save = a; int a_rs_save = a_rs; int a_cs_save = a_cs; scomplex zero = bl1_c0(); scomplex one = bl1_c1(); scomplex* x_conj; scomplex* ax; int lda, inca; int incx_conj; int incax; // Return early if possible. if ( bl1_zero_dim1( m ) ) return; // If necessary, allocate, initialize, and use a temporary contiguous // copy of the matrix rather than the original matrix. bl1_ccreate_contigmr( uplo, m, m, a_save, a_rs_save, a_cs_save, &a, &a_rs, &a_cs ); // Initialize with values assuming column-major storage. lda = a_cs; inca = a_rs; // If A is a row-major matrix, then we can use the underlying column-major // BLAS implementation by fiddling with the parameters. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( lda, inca ); bl1_toggle_uplo( uplo ); bl1_toggle_conj( conj ); } // We want to handle the case where A is conjugated, but without // explicitly or conjugating A. To do so, we leverage the fact that // computing the product conj(A) * x is equivalent to computing // conj( A * conj(x) ). if ( bl1_is_conj( conj ) ) { // We need a temporary vector so we can create a conjugated copy of x. x_conj = bl1_callocv( m ); incx_conj = 1; bl1_ccopyv( BLIS1_CONJUGATE, m, x, incx, x_conj, incx_conj ); // We need a temporary vector for the product A * conj(x), which is // conformal to y (and x). ax = bl1_callocv( m ); incax = 1; // Compute A * conj(x) where x is the temporary copy of x created above. bl1_chemv_blas( uplo, m, &one, a, lda, x_conj, incx_conj, &zero, ax, incax ); // Scale y by beta. bl1_cscalv( BLIS1_NO_CONJUGATE, m, beta, y, incy ); // And finally, accumulate alpha * conj( A * conj(x) ) into y. bl1_caxpyv( BLIS1_CONJUGATE, m, alpha, ax, incax, y, incy); // Free the temporary vectors for x and Ax. bl1_cfree( x_conj ); bl1_cfree( ax ); } else // noconj { bl1_chemv_blas( uplo, m, alpha, a, lda, x, incx, beta, y, incy ); } // Free the temporary contiguous matrix. bl1_cfree_contigm( a_save, a_rs_save, a_cs_save, &a, &a_rs, &a_cs ); }
void bl1_chemv_blas | ( | uplo1_t | uplo, |
int | m, | ||
scomplex * | alpha, | ||
scomplex * | a, | ||
int | lda, | ||
scomplex * | x, | ||
int | incx, | ||
scomplex * | beta, | ||
scomplex * | y, | ||
int | incy | ||
) |
References bl1_param_map_to_netlib_uplo(), cblas_chemv(), CblasColMajor, and F77_chemv().
Referenced by bl1_chemv().
{ #ifdef BLIS1_ENABLE_CBLAS_INTERFACES enum CBLAS_ORDER cblas_order = CblasColMajor; enum CBLAS_UPLO cblas_uplo; bl1_param_map_to_netlib_uplo( uplo, &cblas_uplo ); cblas_chemv( cblas_order, cblas_uplo, m, alpha, a, lda, x, incx, beta, y, incy ); #else char blas_uplo; bl1_param_map_to_netlib_uplo( uplo, &blas_uplo ); F77_chemv( &blas_uplo, &m, alpha, a, &lda, x, &incx, beta, y, &incy ); #endif }
void bl1_dhemv | ( | uplo1_t | uplo, |
conj1_t | conj, | ||
int | m, | ||
double * | alpha, | ||
double * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
double * | x, | ||
int | incx, | ||
double * | beta, | ||
double * | y, | ||
int | incy | ||
) |
References bl1_dsymv().
Referenced by FLA_Eig_gest_il_opd_var1(), FLA_Eig_gest_il_opd_var2(), FLA_Eig_gest_iu_opd_var1(), FLA_Eig_gest_iu_opd_var2(), FLA_Eig_gest_nl_opd_var1(), FLA_Eig_gest_nl_opd_var2(), FLA_Eig_gest_nu_opd_var1(), FLA_Eig_gest_nu_opd_var2(), FLA_Lyap_h_opd_var1(), and FLA_Lyap_n_opd_var1().
{ bl1_dsymv( uplo, m, alpha, a, a_rs, a_cs, x, incx, beta, y, incy ); }
void bl1_shemv | ( | uplo1_t | uplo, |
conj1_t | conj, | ||
int | m, | ||
float * | alpha, | ||
float * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
float * | x, | ||
int | incx, | ||
float * | beta, | ||
float * | y, | ||
int | incy | ||
) |
References bl1_ssymv().
Referenced by FLA_Eig_gest_il_ops_var1(), FLA_Eig_gest_il_ops_var2(), FLA_Eig_gest_iu_ops_var1(), FLA_Eig_gest_iu_ops_var2(), FLA_Eig_gest_nl_ops_var1(), FLA_Eig_gest_nl_ops_var2(), FLA_Eig_gest_nu_ops_var1(), FLA_Eig_gest_nu_ops_var2(), FLA_Lyap_h_ops_var1(), and FLA_Lyap_n_ops_var1().
{ bl1_ssymv( uplo, m, alpha, a, a_rs, a_cs, x, incx, beta, y, incy ); }
void bl1_zhemv | ( | uplo1_t | uplo, |
conj1_t | conj, | ||
int | m, | ||
dcomplex * | alpha, | ||
dcomplex * | a, | ||
int | a_rs, | ||
int | a_cs, | ||
dcomplex * | x, | ||
int | incx, | ||
dcomplex * | beta, | ||
dcomplex * | y, | ||
int | incy | ||
) |
References bl1_is_conj(), bl1_is_row_storage(), bl1_z0(), bl1_z1(), bl1_zallocv(), bl1_zaxpyv(), bl1_zcopyv(), bl1_zcreate_contigmr(), bl1_zero_dim1(), bl1_zfree(), bl1_zfree_contigm(), bl1_zhemv_blas(), bl1_zscalv(), BLIS1_CONJUGATE, and BLIS1_NO_CONJUGATE.
Referenced by FLA_Eig_gest_il_opz_var1(), FLA_Eig_gest_il_opz_var2(), FLA_Eig_gest_iu_opz_var1(), FLA_Eig_gest_iu_opz_var2(), FLA_Eig_gest_nl_opz_var1(), FLA_Eig_gest_nl_opz_var2(), FLA_Eig_gest_nu_opz_var1(), FLA_Eig_gest_nu_opz_var2(), FLA_Hemv_external(), FLA_Hemvc_external(), FLA_Lyap_h_opz_var1(), FLA_Lyap_n_opz_var1(), FLA_Tridiag_UT_l_step_ofz_var2(), FLA_Tridiag_UT_l_step_ofz_var3(), FLA_Tridiag_UT_l_step_opz_var1(), FLA_Tridiag_UT_l_step_opz_var2(), and FLA_Tridiag_UT_l_step_opz_var3().
{ dcomplex* a_save = a; int a_rs_save = a_rs; int a_cs_save = a_cs; dcomplex zero = bl1_z0(); dcomplex one = bl1_z1(); dcomplex* x_conj; dcomplex* ax; int lda, inca; int incx_conj; int incax; // Return early if possible. if ( bl1_zero_dim1( m ) ) return; // If necessary, allocate, initialize, and use a temporary contiguous // copy of the matrix rather than the original matrix. bl1_zcreate_contigmr( uplo, m, m, a_save, a_rs_save, a_cs_save, &a, &a_rs, &a_cs ); // Initialize with values assuming column-major storage. lda = a_cs; inca = a_rs; // If A is a row-major matrix, then we can use the underlying column-major // BLAS implementation by fiddling with the parameters. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( lda, inca ); bl1_toggle_uplo( uplo ); bl1_toggle_conj( conj ); } // We want to handle the case where A is conjugated, but without // explicitly or conjugating A. To do so, we leverage the fact that // computing the product conj(A) * x is equivalent to computing // conj( A * conj(x) ). if ( bl1_is_conj( conj ) ) { // We need a temporary vector so we can create a conjugated copy of x. x_conj = bl1_zallocv( m ); incx_conj = 1; bl1_zcopyv( BLIS1_CONJUGATE, m, x, incx, x_conj, incx_conj ); // We need a temporary vector for the product A * conj(x), which is // conformal to y (and x). ax = bl1_zallocv( m ); incax = 1; // Compute A * conj(x) where x is the temporary copy of x created above. bl1_zhemv_blas( uplo, m, &one, a, lda, x_conj, incx_conj, &zero, ax, incax ); // Scale y by beta. bl1_zscalv( BLIS1_NO_CONJUGATE, m, beta, y, incy ); // And finally, accumulate alpha * conj( A * conj(x) ) into y. bl1_zaxpyv( BLIS1_CONJUGATE, m, alpha, ax, incax, y, incy); // Free the temporary vectors for x and Ax. bl1_zfree( x_conj ); bl1_zfree( ax ); } else // noconj { bl1_zhemv_blas( uplo, m, alpha, a, lda, x, incx, beta, y, incy ); } // Free the temporary contiguous matrix. bl1_zfree_contigm( a_save, a_rs_save, a_cs_save, &a, &a_rs, &a_cs ); }
void bl1_zhemv_blas | ( | uplo1_t | uplo, |
int | m, | ||
dcomplex * | alpha, | ||
dcomplex * | a, | ||
int | lda, | ||
dcomplex * | x, | ||
int | incx, | ||
dcomplex * | beta, | ||
dcomplex * | y, | ||
int | incy | ||
) |
References bl1_param_map_to_netlib_uplo(), cblas_zhemv(), CblasColMajor, and F77_zhemv().
Referenced by bl1_zhemv().
{ #ifdef BLIS1_ENABLE_CBLAS_INTERFACES enum CBLAS_ORDER cblas_order = CblasColMajor; enum CBLAS_UPLO cblas_uplo; bl1_param_map_to_netlib_uplo( uplo, &cblas_uplo ); cblas_zhemv( cblas_order, cblas_uplo, m, alpha, a, lda, x, incx, beta, y, incy ); #else char blas_uplo; bl1_param_map_to_netlib_uplo( uplo, &blas_uplo ); F77_zhemv( &blas_uplo, &m, alpha, a, &lda, x, &incx, beta, y, &incy ); #endif }