|
libflame
12600
|
Functions | |
| void | bl1_shemv (uplo1_t uplo, conj1_t conj, int m, float *alpha, float *a, int a_rs, int a_cs, float *x, int incx, float *beta, float *y, int incy) |
| void | bl1_dhemv (uplo1_t uplo, conj1_t conj, int m, double *alpha, double *a, int a_rs, int a_cs, double *x, int incx, double *beta, double *y, int incy) |
| void | bl1_chemv (uplo1_t uplo, conj1_t conj, int m, scomplex *alpha, scomplex *a, int a_rs, int a_cs, scomplex *x, int incx, scomplex *beta, scomplex *y, int incy) |
| void | bl1_zhemv (uplo1_t uplo, conj1_t conj, int m, dcomplex *alpha, dcomplex *a, int a_rs, int a_cs, dcomplex *x, int incx, dcomplex *beta, dcomplex *y, int incy) |
| void | bl1_chemv_blas (uplo1_t uplo, int m, scomplex *alpha, scomplex *a, int lda, scomplex *x, int incx, scomplex *beta, scomplex *y, int incy) |
| void | bl1_zhemv_blas (uplo1_t uplo, int m, dcomplex *alpha, dcomplex *a, int lda, dcomplex *x, int incx, dcomplex *beta, dcomplex *y, int incy) |
| void bl1_chemv | ( | uplo1_t | uplo, |
| conj1_t | conj, | ||
| int | m, | ||
| scomplex * | alpha, | ||
| scomplex * | a, | ||
| int | a_rs, | ||
| int | a_cs, | ||
| scomplex * | x, | ||
| int | incx, | ||
| scomplex * | beta, | ||
| scomplex * | y, | ||
| int | incy | ||
| ) |
References bl1_c0(), bl1_c1(), bl1_callocv(), bl1_caxpyv(), bl1_ccopyv(), bl1_ccreate_contigmr(), bl1_cfree(), bl1_cfree_contigm(), bl1_chemv_blas(), bl1_cscalv(), bl1_is_conj(), bl1_is_row_storage(), bl1_zero_dim1(), BLIS1_CONJUGATE, and BLIS1_NO_CONJUGATE.
Referenced by FLA_Eig_gest_il_opc_var1(), FLA_Eig_gest_il_opc_var2(), FLA_Eig_gest_iu_opc_var1(), FLA_Eig_gest_iu_opc_var2(), FLA_Eig_gest_nl_opc_var1(), FLA_Eig_gest_nl_opc_var2(), FLA_Eig_gest_nu_opc_var1(), FLA_Eig_gest_nu_opc_var2(), FLA_Hemv_external(), FLA_Hemvc_external(), FLA_Lyap_h_opc_var1(), FLA_Lyap_n_opc_var1(), FLA_Tridiag_UT_l_step_ofc_var2(), FLA_Tridiag_UT_l_step_ofc_var3(), FLA_Tridiag_UT_l_step_opc_var1(), FLA_Tridiag_UT_l_step_opc_var2(), and FLA_Tridiag_UT_l_step_opc_var3().
{
scomplex* a_save = a;
int a_rs_save = a_rs;
int a_cs_save = a_cs;
scomplex zero = bl1_c0();
scomplex one = bl1_c1();
scomplex* x_conj;
scomplex* ax;
int lda, inca;
int incx_conj;
int incax;
// Return early if possible.
if ( bl1_zero_dim1( m ) ) return;
// If necessary, allocate, initialize, and use a temporary contiguous
// copy of the matrix rather than the original matrix.
bl1_ccreate_contigmr( uplo,
m,
m,
a_save, a_rs_save, a_cs_save,
&a, &a_rs, &a_cs );
// Initialize with values assuming column-major storage.
lda = a_cs;
inca = a_rs;
// If A is a row-major matrix, then we can use the underlying column-major
// BLAS implementation by fiddling with the parameters.
if ( bl1_is_row_storage( a_rs, a_cs ) )
{
bl1_swap_ints( lda, inca );
bl1_toggle_uplo( uplo );
bl1_toggle_conj( conj );
}
// We want to handle the case where A is conjugated, but without
// explicitly or conjugating A. To do so, we leverage the fact that
// computing the product conj(A) * x is equivalent to computing
// conj( A * conj(x) ).
if ( bl1_is_conj( conj ) )
{
// We need a temporary vector so we can create a conjugated copy of x.
x_conj = bl1_callocv( m );
incx_conj = 1;
bl1_ccopyv( BLIS1_CONJUGATE,
m,
x, incx,
x_conj, incx_conj );
// We need a temporary vector for the product A * conj(x), which is
// conformal to y (and x).
ax = bl1_callocv( m );
incax = 1;
// Compute A * conj(x) where x is the temporary copy of x created above.
bl1_chemv_blas( uplo,
m,
&one,
a, lda,
x_conj, incx_conj,
&zero,
ax, incax );
// Scale y by beta.
bl1_cscalv( BLIS1_NO_CONJUGATE,
m,
beta,
y, incy );
// And finally, accumulate alpha * conj( A * conj(x) ) into y.
bl1_caxpyv( BLIS1_CONJUGATE,
m,
alpha,
ax, incax,
y, incy);
// Free the temporary vectors for x and Ax.
bl1_cfree( x_conj );
bl1_cfree( ax );
}
else // noconj
{
bl1_chemv_blas( uplo,
m,
alpha,
a, lda,
x, incx,
beta,
y, incy );
}
// Free the temporary contiguous matrix.
bl1_cfree_contigm( a_save, a_rs_save, a_cs_save,
&a, &a_rs, &a_cs );
}
| void bl1_chemv_blas | ( | uplo1_t | uplo, |
| int | m, | ||
| scomplex * | alpha, | ||
| scomplex * | a, | ||
| int | lda, | ||
| scomplex * | x, | ||
| int | incx, | ||
| scomplex * | beta, | ||
| scomplex * | y, | ||
| int | incy | ||
| ) |
References bl1_param_map_to_netlib_uplo(), cblas_chemv(), CblasColMajor, and F77_chemv().
Referenced by bl1_chemv().
{
#ifdef BLIS1_ENABLE_CBLAS_INTERFACES
enum CBLAS_ORDER cblas_order = CblasColMajor;
enum CBLAS_UPLO cblas_uplo;
bl1_param_map_to_netlib_uplo( uplo, &cblas_uplo );
cblas_chemv( cblas_order,
cblas_uplo,
m,
alpha,
a, lda,
x, incx,
beta,
y, incy );
#else
char blas_uplo;
bl1_param_map_to_netlib_uplo( uplo, &blas_uplo );
F77_chemv( &blas_uplo,
&m,
alpha,
a, &lda,
x, &incx,
beta,
y, &incy );
#endif
}
| void bl1_dhemv | ( | uplo1_t | uplo, |
| conj1_t | conj, | ||
| int | m, | ||
| double * | alpha, | ||
| double * | a, | ||
| int | a_rs, | ||
| int | a_cs, | ||
| double * | x, | ||
| int | incx, | ||
| double * | beta, | ||
| double * | y, | ||
| int | incy | ||
| ) |
References bl1_dsymv().
Referenced by FLA_Eig_gest_il_opd_var1(), FLA_Eig_gest_il_opd_var2(), FLA_Eig_gest_iu_opd_var1(), FLA_Eig_gest_iu_opd_var2(), FLA_Eig_gest_nl_opd_var1(), FLA_Eig_gest_nl_opd_var2(), FLA_Eig_gest_nu_opd_var1(), FLA_Eig_gest_nu_opd_var2(), FLA_Lyap_h_opd_var1(), and FLA_Lyap_n_opd_var1().
{
bl1_dsymv( uplo,
m,
alpha,
a, a_rs, a_cs,
x, incx,
beta,
y, incy );
}
| void bl1_shemv | ( | uplo1_t | uplo, |
| conj1_t | conj, | ||
| int | m, | ||
| float * | alpha, | ||
| float * | a, | ||
| int | a_rs, | ||
| int | a_cs, | ||
| float * | x, | ||
| int | incx, | ||
| float * | beta, | ||
| float * | y, | ||
| int | incy | ||
| ) |
References bl1_ssymv().
Referenced by FLA_Eig_gest_il_ops_var1(), FLA_Eig_gest_il_ops_var2(), FLA_Eig_gest_iu_ops_var1(), FLA_Eig_gest_iu_ops_var2(), FLA_Eig_gest_nl_ops_var1(), FLA_Eig_gest_nl_ops_var2(), FLA_Eig_gest_nu_ops_var1(), FLA_Eig_gest_nu_ops_var2(), FLA_Lyap_h_ops_var1(), and FLA_Lyap_n_ops_var1().
{
bl1_ssymv( uplo,
m,
alpha,
a, a_rs, a_cs,
x, incx,
beta,
y, incy );
}
| void bl1_zhemv | ( | uplo1_t | uplo, |
| conj1_t | conj, | ||
| int | m, | ||
| dcomplex * | alpha, | ||
| dcomplex * | a, | ||
| int | a_rs, | ||
| int | a_cs, | ||
| dcomplex * | x, | ||
| int | incx, | ||
| dcomplex * | beta, | ||
| dcomplex * | y, | ||
| int | incy | ||
| ) |
References bl1_is_conj(), bl1_is_row_storage(), bl1_z0(), bl1_z1(), bl1_zallocv(), bl1_zaxpyv(), bl1_zcopyv(), bl1_zcreate_contigmr(), bl1_zero_dim1(), bl1_zfree(), bl1_zfree_contigm(), bl1_zhemv_blas(), bl1_zscalv(), BLIS1_CONJUGATE, and BLIS1_NO_CONJUGATE.
Referenced by FLA_Eig_gest_il_opz_var1(), FLA_Eig_gest_il_opz_var2(), FLA_Eig_gest_iu_opz_var1(), FLA_Eig_gest_iu_opz_var2(), FLA_Eig_gest_nl_opz_var1(), FLA_Eig_gest_nl_opz_var2(), FLA_Eig_gest_nu_opz_var1(), FLA_Eig_gest_nu_opz_var2(), FLA_Hemv_external(), FLA_Hemvc_external(), FLA_Lyap_h_opz_var1(), FLA_Lyap_n_opz_var1(), FLA_Tridiag_UT_l_step_ofz_var2(), FLA_Tridiag_UT_l_step_ofz_var3(), FLA_Tridiag_UT_l_step_opz_var1(), FLA_Tridiag_UT_l_step_opz_var2(), and FLA_Tridiag_UT_l_step_opz_var3().
{
dcomplex* a_save = a;
int a_rs_save = a_rs;
int a_cs_save = a_cs;
dcomplex zero = bl1_z0();
dcomplex one = bl1_z1();
dcomplex* x_conj;
dcomplex* ax;
int lda, inca;
int incx_conj;
int incax;
// Return early if possible.
if ( bl1_zero_dim1( m ) ) return;
// If necessary, allocate, initialize, and use a temporary contiguous
// copy of the matrix rather than the original matrix.
bl1_zcreate_contigmr( uplo,
m,
m,
a_save, a_rs_save, a_cs_save,
&a, &a_rs, &a_cs );
// Initialize with values assuming column-major storage.
lda = a_cs;
inca = a_rs;
// If A is a row-major matrix, then we can use the underlying column-major
// BLAS implementation by fiddling with the parameters.
if ( bl1_is_row_storage( a_rs, a_cs ) )
{
bl1_swap_ints( lda, inca );
bl1_toggle_uplo( uplo );
bl1_toggle_conj( conj );
}
// We want to handle the case where A is conjugated, but without
// explicitly or conjugating A. To do so, we leverage the fact that
// computing the product conj(A) * x is equivalent to computing
// conj( A * conj(x) ).
if ( bl1_is_conj( conj ) )
{
// We need a temporary vector so we can create a conjugated copy of x.
x_conj = bl1_zallocv( m );
incx_conj = 1;
bl1_zcopyv( BLIS1_CONJUGATE,
m,
x, incx,
x_conj, incx_conj );
// We need a temporary vector for the product A * conj(x), which is
// conformal to y (and x).
ax = bl1_zallocv( m );
incax = 1;
// Compute A * conj(x) where x is the temporary copy of x created above.
bl1_zhemv_blas( uplo,
m,
&one,
a, lda,
x_conj, incx_conj,
&zero,
ax, incax );
// Scale y by beta.
bl1_zscalv( BLIS1_NO_CONJUGATE,
m,
beta,
y, incy );
// And finally, accumulate alpha * conj( A * conj(x) ) into y.
bl1_zaxpyv( BLIS1_CONJUGATE,
m,
alpha,
ax, incax,
y, incy);
// Free the temporary vectors for x and Ax.
bl1_zfree( x_conj );
bl1_zfree( ax );
}
else // noconj
{
bl1_zhemv_blas( uplo,
m,
alpha,
a, lda,
x, incx,
beta,
y, incy );
}
// Free the temporary contiguous matrix.
bl1_zfree_contigm( a_save, a_rs_save, a_cs_save,
&a, &a_rs, &a_cs );
}
| void bl1_zhemv_blas | ( | uplo1_t | uplo, |
| int | m, | ||
| dcomplex * | alpha, | ||
| dcomplex * | a, | ||
| int | lda, | ||
| dcomplex * | x, | ||
| int | incx, | ||
| dcomplex * | beta, | ||
| dcomplex * | y, | ||
| int | incy | ||
| ) |
References bl1_param_map_to_netlib_uplo(), cblas_zhemv(), CblasColMajor, and F77_zhemv().
Referenced by bl1_zhemv().
{
#ifdef BLIS1_ENABLE_CBLAS_INTERFACES
enum CBLAS_ORDER cblas_order = CblasColMajor;
enum CBLAS_UPLO cblas_uplo;
bl1_param_map_to_netlib_uplo( uplo, &cblas_uplo );
cblas_zhemv( cblas_order,
cblas_uplo,
m,
alpha,
a, lda,
x, incx,
beta,
y, incy );
#else
char blas_uplo;
bl1_param_map_to_netlib_uplo( uplo, &blas_uplo );
F77_zhemv( &blas_uplo,
&m,
alpha,
a, &lda,
x, &incx,
beta,
y, &incy );
#endif
}
1.7.6.1