libflame  12600
Functions
bl1_her2k.c File Reference

(r12600)

Functions

void bl1_sher2k (uplo1_t uplo, trans1_t trans, int m, int k, float *alpha, float *a, int a_rs, int a_cs, float *b, int b_rs, int b_cs, float *beta, float *c, int c_rs, int c_cs)
void bl1_dher2k (uplo1_t uplo, trans1_t trans, int m, int k, double *alpha, double *a, int a_rs, int a_cs, double *b, int b_rs, int b_cs, double *beta, double *c, int c_rs, int c_cs)
void bl1_cher2k (uplo1_t uplo, trans1_t trans, int m, int k, scomplex *alpha, scomplex *a, int a_rs, int a_cs, scomplex *b, int b_rs, int b_cs, float *beta, scomplex *c, int c_rs, int c_cs)
void bl1_zher2k (uplo1_t uplo, trans1_t trans, int m, int k, dcomplex *alpha, dcomplex *a, int a_rs, int a_cs, dcomplex *b, int b_rs, int b_cs, double *beta, dcomplex *c, int c_rs, int c_cs)
void bl1_cher2k_blas (uplo1_t uplo, trans1_t trans, int m, int k, scomplex *alpha, scomplex *a, int lda, scomplex *b, int ldb, float *beta, scomplex *c, int ldc)
void bl1_zher2k_blas (uplo1_t uplo, trans1_t trans, int m, int k, dcomplex *alpha, dcomplex *a, int lda, dcomplex *b, int ldb, double *beta, dcomplex *c, int ldc)

Function Documentation

void bl1_cher2k ( uplo1_t  uplo,
trans1_t  trans,
int  m,
int  k,
scomplex alpha,
scomplex a,
int  a_rs,
int  a_cs,
scomplex b,
int  b_rs,
int  b_cs,
float *  beta,
scomplex c,
int  c_rs,
int  c_cs 
)

References bl1_c1(), bl1_callocm(), bl1_caxpymrt(), bl1_ccopymt(), bl1_ccreate_contigmr(), bl1_ccreate_contigmt(), bl1_cfree(), bl1_cfree_contigm(), bl1_cfree_saved_contigmr(), bl1_cher2k_blas(), bl1_csscalmr(), bl1_is_col_storage(), bl1_s0(), bl1_set_dims_with_trans(), bl1_zero_dim2(), BLIS1_CONJ_NO_TRANSPOSE, and BLIS1_NO_TRANSPOSE.

Referenced by FLA_Her2k_external().

{
    uplo1_t    uplo_save = uplo;
    int       m_save    = m;
    scomplex* a_save    = a;
    scomplex* b_save    = b;
    scomplex* c_save    = c;
    int       a_rs_save = a_rs;
    int       a_cs_save = a_cs;
    int       b_rs_save = b_rs;
    int       b_cs_save = b_cs;
    int       c_rs_save = c_rs;
    int       c_cs_save = c_cs;
    float     zero_r = bl1_s0();
    scomplex  one    = bl1_c1();
    scomplex  alpha_copy;
    scomplex* a_copy;
    scomplex* b_copy;
    scomplex* c_conj;
    int       lda, inca;
    int       ldb, incb;
    int       ldc, incc;
    int       lda_copy, inca_copy;
    int       ldb_copy, incb_copy;
    int       ldc_conj, incc_conj;
    int       her2k_needs_copya      = FALSE;
    int       her2k_needs_copyb      = FALSE;
    int       her2k_needs_conj       = FALSE;
    int       her2k_needs_alpha_conj = FALSE;

    // Return early if possible.
    if ( bl1_zero_dim2( m, k ) ) return;

    // If necessary, allocate, initialize, and use a temporary contiguous
    // copy of each matrix rather than the original matrices.
    bl1_ccreate_contigmt( trans,
                          m,
                          k,
                          a_save, a_rs_save, a_cs_save,
                          &a,     &a_rs,     &a_cs );

    bl1_ccreate_contigmt( trans,
                          m,
                          k,
                          b_save, b_rs_save, b_cs_save,
                          &b,     &b_rs,     &b_cs );

    bl1_ccreate_contigmr( uplo,
                          m,
                          m,
                          c_save, c_rs_save, c_cs_save,
                          &c,     &c_rs,     &c_cs );

    // Initialize with values assuming column-major storage.
    lda  = a_cs;
    inca = a_rs;
    ldb  = b_cs;
    incb = b_rs;
    ldc  = c_cs;
    incc = c_rs;

    // Adjust the parameters based on the storage of each matrix.
    if ( bl1_is_col_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: uplo( C_c ) += A_c * B_c' + B_c * A_c'
                // requested operation: uplo( C_c ) += A_c * B_c' + B_c * A_c'
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: uplo( C_c ) += A_c * B_r' + B_r * A_c'
                // requested operation: uplo( C_c ) += A_c * B_c' + B_c * A_c'
                her2k_needs_copyb = TRUE;
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: uplo( C_c ) += A_r * B_c' + B_c * A_r'
                // requested operation: uplo( C_c ) += A_c * B_c' + B_c * A_c'
                her2k_needs_copya = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: uplo( C_c ) += A_r * B_r' + B_r * A_r'
                // requested operation: uplo( C_c ) += conj( A_c' * B_c + B_c' * A_c )
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );

                bl1_toggle_conjtrans( trans );

                her2k_needs_conj       = TRUE;
                her2k_needs_alpha_conj = TRUE;
            }
        }
    }
    else // if ( bl1_is_row_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation:  uplo( C_r ) += A_c * B_c' + B_c * A_c'
                // requested operation: ~uplo( C_c ) += conj( A_c * B_c' + B_c * A_c' )
                bl1_swap_ints( ldc, incc );

                bl1_toggle_uplo( uplo );

                her2k_needs_conj = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation:  uplo( C_r ) += A_c * B_r' + B_r * A_c'
                // requested operation: ~uplo( C_c ) += conj( A_c * B_c' + B_c * A_c' )
                her2k_needs_copyb = TRUE;

                bl1_swap_ints( ldc, incc );

                bl1_toggle_uplo( uplo );

                her2k_needs_conj = TRUE;
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation:  uplo( C_r ) += A_r * B_c' + B_c * A_r'
                // requested operation: ~uplo( C_c ) += conj( A_c * B_c' + B_c * A_c' )
                her2k_needs_copya = TRUE;

                bl1_swap_ints( ldc, incc );

                bl1_toggle_uplo( uplo );

                her2k_needs_conj = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation:  uplo( C_r ) += A_r * B_r' + B_r * A_r'
                // requested operation: ~uplo( C_c ) += A_c' * B_c + B_c' * A_c
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );

                bl1_toggle_uplo( uplo );
                bl1_toggle_conjtrans( trans );

                her2k_needs_alpha_conj = TRUE;
            }
        }
    }

    // Make a copy of alpha and conjugate if necessary.
    alpha_copy = *alpha;
    if ( her2k_needs_alpha_conj )
    {
        bl1_zconjs( &alpha_copy );
    }

    a_copy    = a;
    lda_copy  = lda;
    inca_copy = inca;
    
    // There are two cases where we need to copy A column-major storage.
    // We handle those two cases here.
    if ( her2k_needs_copya )
    {
        int m_a;
        int n_a;

        // Determine the dimensions of A according to the value of trans. We
        // need this in order to set the leading dimension of the copy of A.
        bl1_set_dims_with_trans( trans, m, k, &m_a, &n_a );

        // We need a temporary matrix to hold a column-major copy of A.
        a_copy    = bl1_callocm( m, k );
        lda_copy  = m_a;
        inca_copy = 1;

        // Copy the contents of A into A_copy.
        bl1_ccopymt( BLIS1_NO_TRANSPOSE,
                     m_a,
                     n_a,
                     a,      inca,      lda,
                     a_copy, inca_copy, lda_copy );
    }
    
    b_copy    = b;
    ldb_copy  = ldb;
    incb_copy = incb;

    // There are two cases where we need to copy B column-major storage.
    // We handle those two cases here.
    if ( her2k_needs_copyb )
    {
        int m_b;
        int n_b;

        // Determine the dimensions of B according to the value of trans. We
        // need this in order to set the leading dimension of the copy of B.
        bl1_set_dims_with_trans( trans, m, k, &m_b, &n_b );

        // We need a temporary matrix to hold a column-major copy of B.
        b_copy    = bl1_callocm( m, k );
        ldb_copy  = m_b;
        incb_copy = 1;

        // Copy the contents of B into B_copy.
        bl1_ccopymt( BLIS1_NO_TRANSPOSE,
                     m_b,
                     n_b,
                     b,      incb,      ldb,
                     b_copy, incb_copy, ldb_copy );
    }

    // There are two cases where we need to perform the rank-2k product and
    // then axpy the result into C with a conjugation. We handle those two
    // cases here.
    if ( her2k_needs_conj )
    {
        // We need a temporary matrix for holding the rank-k product.
        c_conj    = bl1_callocm( m, m );
        ldc_conj  = m;
        incc_conj = 1;

        // Compute the rank-2k product.
        bl1_cher2k_blas( uplo,
                         trans,
                         m,
                         k,
                         &alpha_copy,
                         a_copy, lda_copy,
                         b_copy, ldb_copy,
                         &zero_r,
                         c_conj, ldc_conj );

        // Scale C by beta.
        bl1_csscalmr( uplo,
                      m,
                      m,
                      beta,
                      c, incc, ldc );

        // And finally, accumulate the rank-2k product in C_conj into C
        // with a conjugation.
        bl1_caxpymrt( uplo,
                      BLIS1_CONJ_NO_TRANSPOSE,
                      m,
                      m,
                      &one,
                      c_conj, incc_conj, ldc_conj,
                      c,      incc,      ldc );

        // Free the temporary matrix for C.
        bl1_cfree( c_conj );
    }
    else
    {
        bl1_cher2k_blas( uplo,
                         trans,
                         m,
                         k,
                         &alpha_copy,
                         a_copy, lda_copy,
                         b_copy, ldb_copy,
                         beta,
                         c, ldc );
    }

    if ( her2k_needs_copya )
        bl1_cfree( a_copy );

    if ( her2k_needs_copyb )
        bl1_cfree( b_copy );

    // Free any temporary contiguous matrices, copying the result back to
    // the original matrix.
    bl1_cfree_contigm( a_save, a_rs_save, a_cs_save,
                       &a,     &a_rs,     &a_cs );

    bl1_cfree_contigm( b_save, b_rs_save, b_cs_save,
                       &b,     &b_rs,     &b_cs );

    bl1_cfree_saved_contigmr( uplo_save,
                              m_save,
                              m_save,
                              c_save, c_rs_save, c_cs_save,
                              &c,     &c_rs,     &c_cs );
}
void bl1_cher2k_blas ( uplo1_t  uplo,
trans1_t  trans,
int  m,
int  k,
scomplex alpha,
scomplex a,
int  lda,
scomplex b,
int  ldb,
float *  beta,
scomplex c,
int  ldc 
)

References bl1_param_map_to_netlib_trans(), bl1_param_map_to_netlib_uplo(), cblas_cher2k(), CblasColMajor, and F77_cher2k().

Referenced by bl1_cher2k().

{
#ifdef BLIS1_ENABLE_CBLAS_INTERFACES
    enum CBLAS_ORDER     cblas_order = CblasColMajor;
    enum CBLAS_UPLO      cblas_uplo;
    enum CBLAS_TRANSPOSE cblas_trans;

    bl1_param_map_to_netlib_uplo( uplo, &cblas_uplo );
    bl1_param_map_to_netlib_trans( trans, &cblas_trans );

    cblas_cher2k( cblas_order,
                  cblas_uplo,
                  cblas_trans,
                  m,
                  k,
                  alpha,
                  a, lda,
                  b, ldb,
                  *beta,
                  c, ldc );
#else
    char blas_uplo;
    char blas_trans;

    bl1_param_map_to_netlib_uplo( uplo, &blas_uplo );
    bl1_param_map_to_netlib_trans( trans, &blas_trans );

    F77_cher2k( &blas_uplo,
                &blas_trans,
                &m,
                &k,
                alpha,
                a, &lda,
                b, &ldb,
                beta,
                c, &ldc );
#endif
}
void bl1_dher2k ( uplo1_t  uplo,
trans1_t  trans,
int  m,
int  k,
double *  alpha,
double *  a,
int  a_rs,
int  a_cs,
double *  b,
int  b_rs,
int  b_cs,
double *  beta,
double *  c,
int  c_rs,
int  c_cs 
)

References bl1_dsyr2k().

{
    bl1_dsyr2k( uplo,
                trans,
                m,
                k,
                alpha,
                a, a_rs, a_cs,
                b, b_rs, b_cs,
                beta,
                c, c_rs, c_cs );
}
void bl1_sher2k ( uplo1_t  uplo,
trans1_t  trans,
int  m,
int  k,
float *  alpha,
float *  a,
int  a_rs,
int  a_cs,
float *  b,
int  b_rs,
int  b_cs,
float *  beta,
float *  c,
int  c_rs,
int  c_cs 
)

References bl1_ssyr2k().

{
    bl1_ssyr2k( uplo,
                trans,
                m,
                k,
                alpha,
                a, a_rs, a_cs,
                b, b_rs, b_cs,
                beta,
                c, c_rs, c_cs );
}
void bl1_zher2k ( uplo1_t  uplo,
trans1_t  trans,
int  m,
int  k,
dcomplex alpha,
dcomplex a,
int  a_rs,
int  a_cs,
dcomplex b,
int  b_rs,
int  b_cs,
double *  beta,
dcomplex c,
int  c_rs,
int  c_cs 
)

References bl1_d0(), bl1_is_col_storage(), bl1_set_dims_with_trans(), bl1_z1(), bl1_zallocm(), bl1_zaxpymrt(), bl1_zcopymt(), bl1_zcreate_contigmr(), bl1_zcreate_contigmt(), bl1_zdscalmr(), bl1_zero_dim2(), bl1_zfree(), bl1_zfree_contigm(), bl1_zfree_saved_contigmr(), bl1_zher2k_blas(), BLIS1_CONJ_NO_TRANSPOSE, and BLIS1_NO_TRANSPOSE.

Referenced by FLA_Her2k_external().

{
    uplo1_t    uplo_save = uplo;
    int       m_save    = m;
    dcomplex* a_save    = a;
    dcomplex* b_save    = b;
    dcomplex* c_save    = c;
    int       a_rs_save = a_rs;
    int       a_cs_save = a_cs;
    int       b_rs_save = b_rs;
    int       b_cs_save = b_cs;
    int       c_rs_save = c_rs;
    int       c_cs_save = c_cs;
    double    zero_r = bl1_d0();
    dcomplex  one    = bl1_z1();
    dcomplex  alpha_copy;
    dcomplex* a_copy;
    dcomplex* b_copy;
    dcomplex* c_conj;
    int       lda, inca;
    int       ldb, incb;
    int       ldc, incc;
    int       lda_copy, inca_copy;
    int       ldb_copy, incb_copy;
    int       ldc_conj, incc_conj;
    int       her2k_needs_copya      = FALSE;
    int       her2k_needs_copyb      = FALSE;
    int       her2k_needs_conj       = FALSE;
    int       her2k_needs_alpha_conj = FALSE;

    // Return early if possible.
    if ( bl1_zero_dim2( m, k ) ) return;

    // If necessary, allocate, initialize, and use a temporary contiguous
    // copy of each matrix rather than the original matrices.
    bl1_zcreate_contigmt( trans,
                          m,
                          k,
                          a_save, a_rs_save, a_cs_save,
                          &a,     &a_rs,     &a_cs );

    bl1_zcreate_contigmt( trans,
                          m,
                          k,
                          b_save, b_rs_save, b_cs_save,
                          &b,     &b_rs,     &b_cs );

    bl1_zcreate_contigmr( uplo,
                          m,
                          m,
                          c_save, c_rs_save, c_cs_save,
                          &c,     &c_rs,     &c_cs );

    // Initialize with values assuming column-major storage.
    lda  = a_cs;
    inca = a_rs;
    ldb  = b_cs;
    incb = b_rs;
    ldc  = c_cs;
    incc = c_rs;

    // Adjust the parameters based on the storage of each matrix.
    if ( bl1_is_col_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: uplo( C_c ) += A_c * B_c' + B_c * A_c'
                // requested operation: uplo( C_c ) += A_c * B_c' + B_c * A_c'
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: uplo( C_c ) += A_c * B_r' + B_r * A_c'
                // requested operation: uplo( C_c ) += A_c * B_c' + B_c * A_c'
                her2k_needs_copyb = TRUE;
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation: uplo( C_c ) += A_r * B_c' + B_c * A_r'
                // requested operation: uplo( C_c ) += A_c * B_c' + B_c * A_c'
                her2k_needs_copya = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation: uplo( C_c ) += A_r * B_r' + B_r * A_r'
                // requested operation: uplo( C_c ) += conj( A_c' * B_c + B_c' * A_c )
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );

                bl1_toggle_conjtrans( trans );

                her2k_needs_conj       = TRUE;
                her2k_needs_alpha_conj = TRUE;
            }
        }
    }
    else // if ( bl1_is_row_storage( c_rs, c_cs ) )
    {
        if ( bl1_is_col_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation:  uplo( C_r ) += A_c * B_c' + B_c * A_c'
                // requested operation: ~uplo( C_c ) += conj( A_c * B_c' + B_c * A_c' )
                bl1_swap_ints( ldc, incc );

                bl1_toggle_uplo( uplo );

                her2k_needs_conj = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation:  uplo( C_r ) += A_c * B_r' + B_r * A_c'
                // requested operation: ~uplo( C_c ) += conj( A_c * B_c' + B_c * A_c' )
                her2k_needs_copyb = TRUE;

                bl1_swap_ints( ldc, incc );

                bl1_toggle_uplo( uplo );

                her2k_needs_conj = TRUE;
            }
        }
        else // if ( bl1_is_row_storage( a_rs, a_cs ) )
        {
            if ( bl1_is_col_storage( b_rs, b_cs ) )
            {
                // requested operation:  uplo( C_r ) += A_r * B_c' + B_c * A_r'
                // requested operation: ~uplo( C_c ) += conj( A_c * B_c' + B_c * A_c' )
                her2k_needs_copya = TRUE;

                bl1_swap_ints( ldc, incc );

                bl1_toggle_uplo( uplo );

                her2k_needs_conj = TRUE;
            }
            else // if ( bl1_is_row_storage( b_rs, b_cs ) )
            {
                // requested operation:  uplo( C_r ) += A_r * B_r' + B_r * A_r'
                // requested operation: ~uplo( C_c ) += A_c' * B_c + B_c' * A_c
                bl1_swap_ints( ldc, incc );
                bl1_swap_ints( lda, inca );
                bl1_swap_ints( ldb, incb );

                bl1_toggle_uplo( uplo );
                bl1_toggle_conjtrans( trans );

                her2k_needs_alpha_conj = TRUE;
            }
        }
    }

    // Make a copy of alpha and conjugate if necessary.
    alpha_copy = *alpha;
    if ( her2k_needs_alpha_conj )
    {
        bl1_zconjs( &alpha_copy );
    }

    a_copy    = a;
    lda_copy  = lda;
    inca_copy = inca;
    
    // There are two cases where we need to copy A column-major storage.
    // We handle those two cases here.
    if ( her2k_needs_copya )
    {
        int m_a;
        int n_a;

        // Determine the dimensions of A according to the value of trans. We
        // need this in order to set the leading dimension of the copy of A.
        bl1_set_dims_with_trans( trans, m, k, &m_a, &n_a );

        // We need a temporary matrix to hold a column-major copy of A.
        a_copy    = bl1_zallocm( m, k );
        lda_copy  = m_a;
        inca_copy = 1;

        // Copy the contents of A into A_copy.
        bl1_zcopymt( BLIS1_NO_TRANSPOSE,
                     m_a,
                     n_a,
                     a,      inca,      lda,
                     a_copy, inca_copy, lda_copy );
    }
    
    b_copy    = b;
    ldb_copy  = ldb;
    incb_copy = incb;

    // There are two cases where we need to copy B column-major storage.
    // We handle those two cases here.
    if ( her2k_needs_copyb )
    {
        int m_b;
        int n_b;

        // Determine the dimensions of B according to the value of trans. We
        // need this in order to set the leading dimension of the copy of B.
        bl1_set_dims_with_trans( trans, m, k, &m_b, &n_b );

        // We need a temporary matrix to hold a column-major copy of B.
        b_copy    = bl1_zallocm( m, k );
        ldb_copy  = m_b;
        incb_copy = 1;

        // Copy the contents of B into B_copy.
        bl1_zcopymt( BLIS1_NO_TRANSPOSE,
                     m_b,
                     n_b,
                     b,      incb,      ldb,
                     b_copy, incb_copy, ldb_copy );
    }

    // There are two cases where we need to perform the rank-2k product and
    // then axpy the result into C with a conjugation. We handle those two
    // cases here.
    if ( her2k_needs_conj )
    {
        // We need a temporary matrix for holding the rank-k product.
        c_conj    = bl1_zallocm( m, m );
        ldc_conj  = m;
        incc_conj = 1;

        // Compute the rank-2k product.
        bl1_zher2k_blas( uplo,
                         trans,
                         m,
                         k,
                         &alpha_copy,
                         a_copy, lda_copy,
                         b_copy, ldb_copy,
                         &zero_r,
                         c_conj, ldc_conj );

        // Scale C by beta.
        bl1_zdscalmr( uplo,
                      m,
                      m,
                      beta,
                      c, incc, ldc );

        // And finally, accumulate the rank-2k product in C_conj into C
        // with a conjugation.
        bl1_zaxpymrt( uplo,
                      BLIS1_CONJ_NO_TRANSPOSE,
                      m,
                      m,
                      &one,
                      c_conj, incc_conj, ldc_conj,
                      c,      incc,      ldc );

        // Free the temporary matrix for C.
        bl1_zfree( c_conj );
    }
    else
    {
        bl1_zher2k_blas( uplo,
                         trans,
                         m,
                         k,
                         &alpha_copy,
                         a_copy, lda_copy,
                         b_copy, ldb_copy,
                         beta,
                         c, ldc );
    }

    if ( her2k_needs_copya )
        bl1_zfree( a_copy );

    if ( her2k_needs_copyb )
        bl1_zfree( b_copy );

    // Free any temporary contiguous matrices, copying the result back to
    // the original matrix.
    bl1_zfree_contigm( a_save, a_rs_save, a_cs_save,
                       &a,     &a_rs,     &a_cs );

    bl1_zfree_contigm( b_save, b_rs_save, b_cs_save,
                       &b,     &b_rs,     &b_cs );

    bl1_zfree_saved_contigmr( uplo_save,
                              m_save,
                              m_save,
                              c_save, c_rs_save, c_cs_save,
                              &c,     &c_rs,     &c_cs );
}
void bl1_zher2k_blas ( uplo1_t  uplo,
trans1_t  trans,
int  m,
int  k,
dcomplex alpha,
dcomplex a,
int  lda,
dcomplex b,
int  ldb,
double *  beta,
dcomplex c,
int  ldc 
)

References bl1_param_map_to_netlib_trans(), bl1_param_map_to_netlib_uplo(), cblas_zher2k(), CblasColMajor, and F77_zher2k().

Referenced by bl1_zher2k().

{
#ifdef BLIS1_ENABLE_CBLAS_INTERFACES
    enum CBLAS_ORDER     cblas_order = CblasColMajor;
    enum CBLAS_UPLO      cblas_uplo;
    enum CBLAS_TRANSPOSE cblas_trans;

    bl1_param_map_to_netlib_uplo( uplo, &cblas_uplo );
    bl1_param_map_to_netlib_trans( trans, &cblas_trans );

    cblas_zher2k( cblas_order,
                  cblas_uplo,
                  cblas_trans,
                  m,
                  k,
                  alpha,
                  a, lda,
                  b, ldb,
                  *beta,
                  c, ldc );
#else
    char blas_uplo;
    char blas_trans;

    bl1_param_map_to_netlib_uplo( uplo, &blas_uplo );
    bl1_param_map_to_netlib_trans( trans, &blas_trans );

    F77_zher2k( &blas_uplo,
                &blas_trans,
                &m,
                &k,
                alpha,
                a, &lda,
                b, &ldb,
                beta,
                c, &ldc );
#endif
}