libflame
12600
|
Functions | |
void | bl1_sinvscalm (conj1_t conj, int m, int n, float *alpha, float *a, int a_rs, int a_cs) |
void | bl1_dinvscalm (conj1_t conj, int m, int n, double *alpha, double *a, int a_rs, int a_cs) |
void | bl1_csinvscalm (conj1_t conj, int m, int n, float *alpha, scomplex *a, int a_rs, int a_cs) |
void | bl1_cinvscalm (conj1_t conj, int m, int n, scomplex *alpha, scomplex *a, int a_rs, int a_cs) |
void | bl1_zdinvscalm (conj1_t conj, int m, int n, double *alpha, dcomplex *a, int a_rs, int a_cs) |
void | bl1_zinvscalm (conj1_t conj, int m, int n, dcomplex *alpha, dcomplex *a, int a_rs, int a_cs) |
void bl1_cinvscalm | ( | conj1_t | conj, |
int | m, | ||
int | n, | ||
scomplex * | alpha, | ||
scomplex * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bl1_cinvert2s(), bl1_cscal(), bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by FLA_Inv_scal_external(), and FLA_Inv_scalc_external().
{ scomplex alpha_inv; scomplex* a_begin; int lda, inca; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; if ( bl1_ceq1( alpha ) ) return; // Handle cases where A is a vector to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for a vector. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix // by rows instead of by columns to increase spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } bl1_cinvert2s( conj, alpha, &alpha_inv ); for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; bl1_cscal( n_elem, &alpha_inv, a_begin, inca ); } }
void bl1_csinvscalm | ( | conj1_t | conj, |
int | m, | ||
int | n, | ||
float * | alpha, | ||
scomplex * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bl1_csscal(), bl1_is_row_storage(), bl1_is_vector(), bl1_sinvert2s(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by FLA_Inv_scal_external(), and FLA_Inv_scalc_external().
{ float alpha_inv; scomplex* a_begin; int lda, inca; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; if ( bl1_seq1( alpha ) ) return; // Handle cases where A is a vector to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for a vector. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix // by rows instead of by columns to increase spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } bl1_sinvert2s( conj, alpha, &alpha_inv ); for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; bl1_csscal( n_elem, &alpha_inv, a_begin, inca ); } }
void bl1_dinvscalm | ( | conj1_t | conj, |
int | m, | ||
int | n, | ||
double * | alpha, | ||
double * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bl1_dinvert2s(), bl1_dscal(), bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by FLA_Inv_scal_external(), and FLA_Inv_scalc_external().
{ double alpha_inv; double* a_begin; int lda, inca; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; if ( bl1_deq1( alpha ) ) return; // Handle cases where A is a vector to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for a vector. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix // by rows instead of by columns to increase spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } bl1_dinvert2s( conj, alpha, &alpha_inv ); for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; bl1_dscal( n_elem, &alpha_inv, a_begin, inca ); } }
void bl1_sinvscalm | ( | conj1_t | conj, |
int | m, | ||
int | n, | ||
float * | alpha, | ||
float * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bl1_is_row_storage(), bl1_is_vector(), bl1_sinvert2s(), bl1_sscal(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by FLA_Inv_scal_external(), and FLA_Inv_scalc_external().
{ float alpha_inv; float* a_begin; int lda, inca; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; if ( bl1_seq1( alpha ) ) return; // Handle cases where A is a vector to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for a vector. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix // by rows instead of by columns to increase spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } bl1_sinvert2s( conj, alpha, &alpha_inv ); for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; bl1_sscal( n_elem, &alpha_inv, a_begin, inca ); } }
void bl1_zdinvscalm | ( | conj1_t | conj, |
int | m, | ||
int | n, | ||
double * | alpha, | ||
dcomplex * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bl1_dinvert2s(), bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zdscal(), bl1_zero_dim2(), and BLIS1_NO_TRANSPOSE.
Referenced by FLA_Inv_scal_external(), and FLA_Inv_scalc_external().
{ double alpha_inv; dcomplex* a_begin; int lda, inca; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; if ( bl1_deq1( alpha ) ) return; // Handle cases where A is a vector to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for a vector. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix // by rows instead of by columns to increase spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } bl1_dinvert2s( conj, alpha, &alpha_inv ); for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; bl1_zdscal( n_elem, &alpha_inv, a_begin, inca ); } }
void bl1_zinvscalm | ( | conj1_t | conj, |
int | m, | ||
int | n, | ||
dcomplex * | alpha, | ||
dcomplex * | a, | ||
int | a_rs, | ||
int | a_cs | ||
) |
References bl1_is_row_storage(), bl1_is_vector(), bl1_vector_dim(), bl1_vector_inc(), bl1_zero_dim2(), bl1_zinvert2s(), bl1_zscal(), and BLIS1_NO_TRANSPOSE.
Referenced by FLA_Inv_scal_external(), and FLA_Inv_scalc_external().
{ dcomplex alpha_inv; dcomplex* a_begin; int lda, inca; int n_iter; int n_elem; int j; // Return early if possible. if ( bl1_zero_dim2( m, n ) ) return; if ( bl1_zeq1( alpha ) ) return; // Handle cases where A is a vector to ensure that the underlying axpy // gets invoked only once. if ( bl1_is_vector( m, n ) ) { // Initialize with values appropriate for a vector. n_iter = 1; n_elem = bl1_vector_dim( m, n ); lda = 1; // multiplied by zero when n_iter == 1; not needed. inca = bl1_vector_inc( BLIS1_NO_TRANSPOSE, m, n, a_rs, a_cs ); } else // matrix case { // Initialize with optimal values for column-major storage. n_iter = n; n_elem = m; lda = a_cs; inca = a_rs; // An optimization: if A is row-major, then let's access the matrix // by rows instead of by columns to increase spatial locality. if ( bl1_is_row_storage( a_rs, a_cs ) ) { bl1_swap_ints( n_iter, n_elem ); bl1_swap_ints( lda, inca ); } } bl1_zinvert2s( conj, alpha, &alpha_inv ); for ( j = 0; j < n_iter; j++ ) { a_begin = a + j*lda; bl1_zscal( n_elem, &alpha_inv, a_begin, inca ); } }