|
libflame
12600
|
Functions | |
| void | bl1_srandmr (uplo1_t uplo, diag1_t diag, int m, int n, float *a, int a_rs, int a_cs) |
| void | bl1_drandmr (uplo1_t uplo, diag1_t diag, int m, int n, double *a, int a_rs, int a_cs) |
| void | bl1_crandmr (uplo1_t uplo, diag1_t diag, int m, int n, scomplex *a, int a_rs, int a_cs) |
| void | bl1_zrandmr (uplo1_t uplo, diag1_t diag, int m, int n, dcomplex *a, int a_rs, int a_cs) |
| void bl1_crandmr | ( | uplo1_t | uplo, |
| diag1_t | diag, | ||
| int | m, | ||
| int | n, | ||
| scomplex * | a, | ||
| int | a_rs, | ||
| int | a_cs | ||
| ) |
References bl1_c0(), bl1_c1(), bl1_cinvscalv(), bl1_crands(), bl1_crandv(), bl1_csetv(), bl1_is_nonunit_diag(), bl1_is_row_storage(), bl1_is_unit_diag(), bl1_is_upper(), bl1_is_zero_diag(), bl1_zero_dim2(), BLIS1_NO_CONJUGATE, and scomplex::real.
Referenced by FLA_Random_tri_matrix().
{
scomplex* a_begin;
scomplex* ajj;
scomplex one;
scomplex zero;
scomplex ord;
int lda, inca;
int n_iter;
int n_elem_max;
int n_elem;
int j;
// Return early if possible.
if ( bl1_zero_dim2( m, n ) ) return;
// Initialize with optimal values for column-major storage.
n_iter = n;
n_elem_max = m;
lda = a_cs;
inca = a_rs;
// An optimization: if A is row-major, then let's access the matrix by
// rows instead of by columns to increase spatial locality.
if ( bl1_is_row_storage( a_rs, a_cs ) )
{
bl1_swap_ints( n_iter, n_elem_max );
bl1_swap_ints( lda, inca );
bl1_toggle_uplo( uplo );
}
// Initialize some scalars.
one = bl1_c1();
zero = bl1_c0();
ord = bl1_c0();
ord.real = ( float ) bl1_max( m, n );
if ( bl1_is_upper( uplo ) )
{
for ( j = 0; j < n_iter; j++ )
{
n_elem = bl1_min( j, n_elem_max );
a_begin = a + j*lda;
// Randomize super-diagonal elements.
bl1_crandv( n_elem,
a_begin, inca );
// Normalize super-diagonal elements by order of the matrix.
bl1_cinvscalv( BLIS1_NO_CONJUGATE,
n_elem,
&ord,
a_begin, inca );
// Initialize diagonal and sub-diagonal elements only if there are
// elements left in the column (ie: j < n_elem_max).
if ( j < n_elem_max )
{
ajj = a_begin + j*inca;
// Initialize diagonal element.
if ( bl1_is_unit_diag( diag ) ) *ajj = one;
else if ( bl1_is_zero_diag( diag ) ) *ajj = zero;
else if ( bl1_is_nonunit_diag( diag ) )
{
// We want positive diagonal elements between 1 and 2.
bl1_crands( ajj );
bl1_cabsval2( ajj, ajj );
bl1_cadd3( ajj, &one, ajj );
}
// Initialize sub-diagonal elements to zero.
bl1_csetv( n_elem_max - j - 1,
&zero,
ajj + inca, inca );
}
}
}
else // if ( bl1_is_lower( uplo ) )
{
for ( j = 0; j < n_iter; j++ )
{
n_elem = bl1_min( j, n_elem_max );
a_begin = a + j*lda;
// Initialize super-diagonal to zero.
bl1_csetv( n_elem,
&zero,
a_begin, inca );
// Initialize diagonal and sub-diagonal elements only if there are
// elements left in the column (ie: j < n_elem_max).
if ( j < n_elem_max )
{
ajj = a_begin + j*inca;
// Initialize diagonal element.
if ( bl1_is_unit_diag( diag ) ) *ajj = one;
else if ( bl1_is_zero_diag( diag ) ) *ajj = zero;
else if ( bl1_is_nonunit_diag( diag ) )
{
// We want positive diagonal elements between 1 and 2.
bl1_crands( ajj );
bl1_cabsval2( ajj, ajj );
bl1_cadd3( ajj, &one, ajj );
}
// Randomize sub-diagonal elements.
bl1_crandv( n_elem_max - j - 1,
ajj + inca, inca );
// Normalize sub-diagonal elements by order of the matrix.
bl1_cinvscalv( BLIS1_NO_CONJUGATE,
n_elem_max - j - 1,
&ord,
ajj + inca, inca );
}
}
}
}
| void bl1_drandmr | ( | uplo1_t | uplo, |
| diag1_t | diag, | ||
| int | m, | ||
| int | n, | ||
| double * | a, | ||
| int | a_rs, | ||
| int | a_cs | ||
| ) |
References bl1_d0(), bl1_d1(), bl1_dinvscalv(), bl1_drands(), bl1_drandv(), bl1_dsetv(), bl1_is_nonunit_diag(), bl1_is_row_storage(), bl1_is_unit_diag(), bl1_is_upper(), bl1_is_zero_diag(), bl1_zero_dim2(), and BLIS1_NO_CONJUGATE.
Referenced by FLA_Random_tri_matrix().
{
double* a_begin;
double* ajj;
double one;
double zero;
double ord;
int lda, inca;
int n_iter;
int n_elem_max;
int n_elem;
int j;
// Return early if possible.
if ( bl1_zero_dim2( m, n ) ) return;
// Initialize with optimal values for column-major storage.
n_iter = n;
n_elem_max = m;
lda = a_cs;
inca = a_rs;
// An optimization: if A is row-major, then let's access the matrix by
// rows instead of by columns to increase spatial locality.
if ( bl1_is_row_storage( a_rs, a_cs ) )
{
bl1_swap_ints( n_iter, n_elem_max );
bl1_swap_ints( lda, inca );
bl1_toggle_uplo( uplo );
}
// Initialize some scalars.
one = bl1_d1();
zero = bl1_d0();
ord = ( double ) bl1_max( m, n );
if ( bl1_is_upper( uplo ) )
{
for ( j = 0; j < n_iter; j++ )
{
n_elem = bl1_min( j, n_elem_max );
a_begin = a + j*lda;
// Randomize super-diagonal elements.
bl1_drandv( n_elem,
a_begin, inca );
// Normalize super-diagonal elements by order of the matrix.
bl1_dinvscalv( BLIS1_NO_CONJUGATE,
n_elem,
&ord,
a_begin, inca );
// Initialize diagonal and sub-diagonal elements only if there are
// elements left in the column (ie: j < n_elem_max).
if ( j < n_elem_max )
{
ajj = a_begin + j*inca;
// Initialize diagonal element.
if ( bl1_is_unit_diag( diag ) ) *ajj = one;
else if ( bl1_is_zero_diag( diag ) ) *ajj = zero;
else if ( bl1_is_nonunit_diag( diag ) )
{
// We want positive diagonal elements between 1 and 2.
bl1_drands( ajj );
bl1_dabsval2( ajj, ajj );
bl1_dadd3( ajj, &one, ajj );
}
// Initialize sub-diagonal elements to zero.
bl1_dsetv( n_elem_max - j - 1,
&zero,
ajj + inca, inca );
}
}
}
else // if ( bl1_is_lower( uplo ) )
{
for ( j = 0; j < n_iter; j++ )
{
n_elem = bl1_min( j, n_elem_max );
a_begin = a + j*lda;
// Initialize super-diagonal to zero.
bl1_dsetv( n_elem,
&zero,
a_begin, inca );
// Initialize diagonal and sub-diagonal elements only if there are
// elements left in the column (ie: j < n_elem_max).
if ( j < n_elem_max )
{
ajj = a_begin + j*inca;
// Initialize diagonal element.
if ( bl1_is_unit_diag( diag ) ) *ajj = one;
else if ( bl1_is_zero_diag( diag ) ) *ajj = zero;
else if ( bl1_is_nonunit_diag( diag ) )
{
// We want positive diagonal elements between 1 and 2.
bl1_drands( ajj );
bl1_dabsval2( ajj, ajj );
bl1_dadd3( ajj, &one, ajj );
}
// Randomize sub-diagonal elements.
bl1_drandv( n_elem_max - j - 1,
ajj + inca, inca );
// Normalize sub-diagonal elements by order of the matrix.
bl1_dinvscalv( BLIS1_NO_CONJUGATE,
n_elem_max - j - 1,
&ord,
ajj + inca, inca );
}
}
}
}
| void bl1_srandmr | ( | uplo1_t | uplo, |
| diag1_t | diag, | ||
| int | m, | ||
| int | n, | ||
| float * | a, | ||
| int | a_rs, | ||
| int | a_cs | ||
| ) |
References bl1_is_nonunit_diag(), bl1_is_row_storage(), bl1_is_unit_diag(), bl1_is_upper(), bl1_is_zero_diag(), bl1_s0(), bl1_s1(), bl1_sinvscalv(), bl1_srands(), bl1_srandv(), bl1_ssetv(), bl1_zero_dim2(), and BLIS1_NO_CONJUGATE.
Referenced by FLA_Random_tri_matrix().
{
float* a_begin;
float* ajj;
float one;
float zero;
float ord;
int lda, inca;
int n_iter;
int n_elem_max;
int n_elem;
int j;
// Return early if possible.
if ( bl1_zero_dim2( m, n ) ) return;
// Initialize with optimal values for column-major storage.
n_iter = n;
n_elem_max = m;
lda = a_cs;
inca = a_rs;
// An optimization: if A is row-major, then let's access the matrix by
// rows instead of by columns to increase spatial locality.
if ( bl1_is_row_storage( a_rs, a_cs ) )
{
bl1_swap_ints( n_iter, n_elem_max );
bl1_swap_ints( lda, inca );
bl1_toggle_uplo( uplo );
}
// Initialize some scalars.
one = bl1_s1();
zero = bl1_s0();
ord = ( float ) bl1_max( m, n );
if ( bl1_is_upper( uplo ) )
{
for ( j = 0; j < n_iter; j++ )
{
n_elem = bl1_min( j, n_elem_max );
a_begin = a + j*lda;
// Randomize super-diagonal elements.
bl1_srandv( n_elem,
a_begin, inca );
// Normalize super-diagonal elements by order of the matrix.
bl1_sinvscalv( BLIS1_NO_CONJUGATE,
n_elem,
&ord,
a_begin, inca );
// Initialize diagonal and sub-diagonal elements only if there are
// elements left in the column (ie: j < n_elem_max).
if ( j < n_elem_max )
{
ajj = a_begin + j*inca;
// Initialize diagonal element.
if ( bl1_is_unit_diag( diag ) ) *ajj = one;
else if ( bl1_is_zero_diag( diag ) ) *ajj = zero;
else if ( bl1_is_nonunit_diag( diag ) )
{
// We want positive diagonal elements between 1 and 2.
bl1_srands( ajj );
bl1_sabsval2( ajj, ajj );
bl1_sadd3( ajj, &one, ajj );
}
// Initialize sub-diagonal elements to zero.
bl1_ssetv( n_elem_max - j - 1,
&zero,
ajj + inca, inca );
}
}
}
else // if ( bl1_is_lower( uplo ) )
{
for ( j = 0; j < n_iter; j++ )
{
n_elem = bl1_min( j, n_elem_max );
a_begin = a + j*lda;
// Initialize super-diagonal to zero.
bl1_ssetv( n_elem,
&zero,
a_begin, inca );
// Initialize diagonal and sub-diagonal elements only if there are
// elements left in the column (ie: j < n_elem_max).
if ( j < n_elem_max )
{
ajj = a_begin + j*inca;
// Initialize diagonal element.
if ( bl1_is_unit_diag( diag ) ) *ajj = one;
else if ( bl1_is_zero_diag( diag ) ) *ajj = zero;
else if ( bl1_is_nonunit_diag( diag ) )
{
// We want positive diagonal elements between 1 and 2.
bl1_srands( ajj );
bl1_sabsval2( ajj, ajj );
bl1_sadd3( ajj, &one, ajj );
}
// Randomize sub-diagonal elements.
bl1_srandv( n_elem_max - j - 1,
ajj + inca, inca );
// Normalize sub-diagonal elements by order of the matrix.
bl1_sinvscalv( BLIS1_NO_CONJUGATE,
n_elem_max - j - 1,
&ord,
ajj + inca, inca );
}
}
}
}
| void bl1_zrandmr | ( | uplo1_t | uplo, |
| diag1_t | diag, | ||
| int | m, | ||
| int | n, | ||
| dcomplex * | a, | ||
| int | a_rs, | ||
| int | a_cs | ||
| ) |
References bl1_is_nonunit_diag(), bl1_is_row_storage(), bl1_is_unit_diag(), bl1_is_upper(), bl1_is_zero_diag(), bl1_z0(), bl1_z1(), bl1_zero_dim2(), bl1_zinvscalv(), bl1_zrands(), bl1_zrandv(), bl1_zsetv(), BLIS1_NO_CONJUGATE, and dcomplex::real.
Referenced by FLA_Random_tri_matrix().
{
dcomplex* a_begin;
dcomplex* ajj;
dcomplex one;
dcomplex zero;
dcomplex ord;
int lda, inca;
int n_iter;
int n_elem_max;
int n_elem;
int j;
// Return early if possible.
if ( bl1_zero_dim2( m, n ) ) return;
// Initialize with optimal values for column-major storage.
n_iter = n;
n_elem_max = m;
lda = a_cs;
inca = a_rs;
// An optimization: if A is row-major, then let's access the matrix by
// rows instead of by columns to increase spatial locality.
if ( bl1_is_row_storage( a_rs, a_cs ) )
{
bl1_swap_ints( n_iter, n_elem_max );
bl1_swap_ints( lda, inca );
bl1_toggle_uplo( uplo );
}
// Initialize some scalars.
one = bl1_z1();
zero = bl1_z0();
ord = bl1_z0();
ord.real = ( double ) bl1_max( m, n );
if ( bl1_is_upper( uplo ) )
{
for ( j = 0; j < n_iter; j++ )
{
n_elem = bl1_min( j, n_elem_max );
a_begin = a + j*lda;
// Randomize super-diagonal elements.
bl1_zrandv( n_elem,
a_begin, inca );
// Normalize super-diagonal elements by order of the matrix.
bl1_zinvscalv( BLIS1_NO_CONJUGATE,
n_elem,
&ord,
a_begin, inca );
// Initialize diagonal and sub-diagonal elements only if there are
// elements left in the column (ie: j < n_elem_max).
if ( j < n_elem_max )
{
ajj = a_begin + j*inca;
// Initialize diagonal element.
if ( bl1_is_unit_diag( diag ) ) *ajj = one;
else if ( bl1_is_zero_diag( diag ) ) *ajj = zero;
else if ( bl1_is_nonunit_diag( diag ) )
{
// We want positive diagonal elements between 1 and 2.
bl1_zrands( ajj );
bl1_zabsval2( ajj, ajj );
bl1_zadd3( ajj, &one, ajj );
}
// Initialize sub-diagonal elements to zero.
bl1_zsetv( n_elem_max - j - 1,
&zero,
ajj + inca, inca );
}
}
}
else // if ( bl1_is_lower( uplo ) )
{
for ( j = 0; j < n_iter; j++ )
{
n_elem = bl1_min( j, n_elem_max );
a_begin = a + j*lda;
// Initialize super-diagonal to zero.
bl1_zsetv( n_elem,
&zero,
a_begin, inca );
// Initialize diagonal and sub-diagonal elements only if there are
// elements left in the column (ie: j < n_elem_max).
if ( j < n_elem_max )
{
ajj = a_begin + j*inca;
// Initialize diagonal element.
if ( bl1_is_unit_diag( diag ) ) *ajj = one;
else if ( bl1_is_zero_diag( diag ) ) *ajj = zero;
else if ( bl1_is_nonunit_diag( diag ) )
{
// We want positive diagonal elements between 1 and 2.
bl1_zrands( ajj );
bl1_zabsval2( ajj, ajj );
bl1_zadd3( ajj, &one, ajj );
}
// Randomize sub-diagonal elements.
bl1_zrandv( n_elem_max - j - 1,
ajj + inca, inca );
// Normalize sub-diagonal elements by order of the matrix.
bl1_zinvscalv( BLIS1_NO_CONJUGATE,
n_elem_max - j - 1,
&ord,
ajj + inca, inca );
}
}
}
}
1.7.6.1