• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
      • Bed
      • 4v
        • 4v-sexprs
          • 4v-sexpr-vars
          • 4v-sexpr-eval
          • 4v-sexpr-to-faig
            • 4v-and-faig-operations-commute
            • 4v-sexpr-to-faig-plain
            • 4v-sexpr-to-faig-opt
            • Sfaig
            • 4v->faig-const
            • 4v-sexpr-to-faig-list
            • Faig-const-fix
              • Faig-const->4v
              • 4v-sexpr-to-faig-alist
              • Faig-const-<=
              • Faig-const-p
            • 4v-sexpr-restrict-with-rw
            • 4vs-constructors
            • 4v-sexpr-compose-with-rw
            • 4v-sexpr-restrict
            • 4v-sexpr-alist-extract
            • 4v-sexpr-compose
            • 4v-nsexpr-p
            • 4v-sexpr-purebool-p
            • 4v-sexpr-<=
            • Sfaig
            • Sexpr-equivs
            • 3v-syntax-sexprp
            • Sexpr-rewriting
            • 4v-sexpr-ind
            • 4v-alist-extract
          • 4v-monotonicity
          • 4v-operations
          • Why-4v-logic
          • 4v-<=
          • 4vp
          • 4vcases
          • 4v-fix
          • 4v-lookup
      • Projects
      • Debugging
      • Std
      • Community
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • 4v-sexpr-to-faig

    Faig-const-fix

    Identity for FAIG constants, or constant X otherwise.

    Signature
    (faig-const-fix x) → *

    Note that an older version of this function independently coerced the car/cdr of t to a Booleans when they were conses, but it seems simpler to just say anything malformed gets fixed to X.

    Definitions and Theorems

    Function: faig-const-fix

    (defun faig-const-fix (x)
      (declare (xargs :guard t))
      (let ((__function__ 'faig-const-fix))
        (declare (ignorable __function__))
        (if (faig-const-p x) x (faig-x))))

    Theorem: faig-const-fix-of-faig-eval

    (defthm faig-const-fix-of-faig-eval
      (equal (faig-const-fix (faig-eval x env))
             (faig-eval x env)))

    Theorem: faig-const-p-of-faig-const-fix

    (defthm faig-const-p-of-faig-const-fix
      (faig-const-p (faig-const-fix x)))

    Theorem: faig-const-fix-of-faig-const

    (defthm faig-const-fix-of-faig-const
      (implies (faig-const-p x)
               (equal (faig-const-fix x) x)))