• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
      • Bed
      • 4v
        • 4v-sexprs
          • 4v-sexpr-vars
          • 4v-sexpr-eval
          • 4v-sexpr-to-faig
            • 4v-and-faig-operations-commute
            • 4v-sexpr-to-faig-plain
            • 4v-sexpr-to-faig-opt
            • Sfaig
            • 4v->faig-const
            • 4v-sexpr-to-faig-list
            • Faig-const-fix
            • Faig-const->4v
            • 4v-sexpr-to-faig-alist
            • Faig-const-<=
            • Faig-const-p
            • 4v-sexpr-restrict-with-rw
            • 4vs-constructors
            • 4v-sexpr-compose-with-rw
            • 4v-sexpr-restrict
            • 4v-sexpr-alist-extract
            • 4v-sexpr-compose
            • 4v-nsexpr-p
            • 4v-sexpr-purebool-p
            • 4v-sexpr-<=
            • Sfaig
            • Sexpr-equivs
            • 3v-syntax-sexprp
            • Sexpr-rewriting
            • 4v-sexpr-ind
            • 4v-alist-extract
          • 4v-monotonicity
          • 4v-operations
          • Why-4v-logic
          • 4v-<=
          • 4vp
          • 4vcases
          • 4v-fix
          • 4v-lookup
      • Projects
      • Debugging
      • Std
      • Community
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • 4v-sexpr-to-faig

    Faig-const-p

    Recognizer for constant faigs.

    Signature
    (faig-const-p x) → *

    (faig-const-p x) recognizes conses whose car/cdr are Booleans, i.e., the four possible constant FAIGs.

    This is the FAIG equivalent of 4vp

    Definitions and Theorems

    Function: faig-const-p

    (defun faig-const-p (x)
      (declare (xargs :guard t))
      (let ((__function__ 'faig-const-p))
        (declare (ignorable __function__))
        (and (consp x)
             (booleanp (car x))
             (booleanp (cdr x)))))

    Theorem: faig-const-p-of-faig-eval

    (defthm faig-const-p-of-faig-eval
      (faig-const-p (faig-eval x env)))