Basic equivalence relation for finalizer structures.
Function:
(defun finalizer-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (finalizerp acl2::x) (finalizerp acl2::y)))) (equal (finalizer-fix acl2::x) (finalizer-fix acl2::y)))
Theorem:
(defthm finalizer-equiv-is-an-equivalence (and (booleanp (finalizer-equiv x y)) (finalizer-equiv x x) (implies (finalizer-equiv x y) (finalizer-equiv y x)) (implies (and (finalizer-equiv x y) (finalizer-equiv y z)) (finalizer-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm finalizer-equiv-implies-equal-finalizer-fix-1 (implies (finalizer-equiv acl2::x x-equiv) (equal (finalizer-fix acl2::x) (finalizer-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm finalizer-fix-under-finalizer-equiv (finalizer-equiv (finalizer-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-finalizer-fix-1-forward-to-finalizer-equiv (implies (equal (finalizer-fix acl2::x) acl2::y) (finalizer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-finalizer-fix-2-forward-to-finalizer-equiv (implies (equal acl2::x (finalizer-fix acl2::y)) (finalizer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm finalizer-equiv-of-finalizer-fix-1-forward (implies (finalizer-equiv (finalizer-fix acl2::x) acl2::y) (finalizer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm finalizer-equiv-of-finalizer-fix-2-forward (implies (finalizer-equiv acl2::x (finalizer-fix acl2::y)) (finalizer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)