Fixing function for finalizer structures.
(finalizer-fix x) → new-x
Function:
(defun finalizer-fix$inline (x) (declare (xargs :guard (finalizerp x))) (let ((__function__ 'finalizer-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((name (identifier-fix (cdr (std::da-nth 0 (cdr x))))) (inputs (finalize-input-list-fix (cdr (std::da-nth 1 (cdr x))))) (comms (command-list-fix (cdr (std::da-nth 2 (cdr x))))) (outputs (finalize-output-list-fix (cdr (std::da-nth 3 (cdr x)))))) (cons :finalizer (list (cons 'name name) (cons 'inputs inputs) (cons 'comms comms) (cons 'outputs outputs)))) :exec x)))
Theorem:
(defthm finalizerp-of-finalizer-fix (b* ((new-x (finalizer-fix$inline x))) (finalizerp new-x)) :rule-classes :rewrite)
Theorem:
(defthm finalizer-fix-when-finalizerp (implies (finalizerp x) (equal (finalizer-fix x) x)))
Function:
(defun finalizer-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (finalizerp acl2::x) (finalizerp acl2::y)))) (equal (finalizer-fix acl2::x) (finalizer-fix acl2::y)))
Theorem:
(defthm finalizer-equiv-is-an-equivalence (and (booleanp (finalizer-equiv x y)) (finalizer-equiv x x) (implies (finalizer-equiv x y) (finalizer-equiv y x)) (implies (and (finalizer-equiv x y) (finalizer-equiv y z)) (finalizer-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm finalizer-equiv-implies-equal-finalizer-fix-1 (implies (finalizer-equiv acl2::x x-equiv) (equal (finalizer-fix acl2::x) (finalizer-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm finalizer-fix-under-finalizer-equiv (finalizer-equiv (finalizer-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-finalizer-fix-1-forward-to-finalizer-equiv (implies (equal (finalizer-fix acl2::x) acl2::y) (finalizer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-finalizer-fix-2-forward-to-finalizer-equiv (implies (equal acl2::x (finalizer-fix acl2::y)) (finalizer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm finalizer-equiv-of-finalizer-fix-1-forward (implies (finalizer-equiv (finalizer-fix acl2::x) acl2::y) (finalizer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm finalizer-equiv-of-finalizer-fix-2-forward (implies (finalizer-equiv acl2::x (finalizer-fix acl2::y)) (finalizer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)