• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-with-tracking
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-marked
        • Aignet-complete-copy
        • Aignet-transforms
          • Aignet-output-ranges
          • Aignet-comb-transforms
            • Fraig
            • Parametrize
            • Observability-fix
            • Constprop
              • Aignet-constprop-sweep
              • Aignet-lit-constprop-init-and-sweep
              • Aignet-lit-constprop
              • Aignet-constprop-sweep-invar
              • Constprop-iter
                • Constprop-once
                • Constprop-core
                • Constprop!
                • Constprop-config
                • Aignet-constprop-stats
              • Apply-m-assumption-n-output-output-transform-default
              • Balance
              • Apply-n-output-comb-transform-default
              • Apply-comb-transform-default
              • Obs-constprop
              • Rewrite
              • Comb-transform
              • Abc-comb-simplify
              • Prune
              • Rewrite!
              • M-assumption-n-output-comb-transform->name
              • N-output-comb-transform->name
              • Comb-transform->name
              • N-output-comb-transformlist
              • M-assumption-n-output-comb-transformlist
              • Comb-transformlist
              • Apply-comb-transform
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Constprop

    Constprop-iter

    Signature
    (constprop-iter iters aignet gatesimp aignet2) → new-aignet2
    Arguments
    iters — Guard (posp iters).
    aignet — input aignet.
    gatesimp — Guard (gatesimp-p gatesimp).
    aignet2 — New aignet -- will be emptied.

    Definitions and Theorems

    Function: constprop-iter

    (defun constprop-iter (iters aignet gatesimp aignet2)
     (declare (xargs :stobjs (aignet aignet2)))
     (declare (xargs :guard (and (posp iters)
                                 (gatesimp-p gatesimp))))
     (declare (xargs :guard (and (equal (num-outs aignet) 1)
                                 (equal (num-regs aignet) 0))))
     (let ((__function__ 'constprop-iter))
      (declare (ignorable __function__))
      (b*
       (((when (eql (lposfix iters) 1))
         (time$ (constprop-once aignet gatesimp aignet2)
                :msg "   - constprop-once: ~st seconds, ~sa bytes.~%"))
        ((local-stobjs aignet-tmp)
         (mv aignet-tmp aignet2))
        (aignet-tmp (constprop-iter (1- (lposfix iters))
                                    aignet gatesimp aignet-tmp))
        (- (cw "Constprop iteration ~x0:"
               (1- (lposfix iters)))
           (print-aignet-stats "" aignet-tmp))
        (aignet2
         (time$ (constprop-once aignet-tmp gatesimp aignet2)
                :msg "   - constprop-once: ~st seconds, ~sa bytes.~%")))
       (mv aignet-tmp aignet2))))

    Theorem: stype-count-of-constprop-iter

    (defthm stype-count-of-constprop-iter
     (b* ((?new-aignet2 (constprop-iter iters aignet gatesimp aignet2)))
       (and (equal (stype-count :pi new-aignet2)
                   (stype-count :pi aignet))
            (equal (stype-count :reg new-aignet2)
                   (stype-count :reg aignet))
            (equal (stype-count :po new-aignet2) 1)
            (equal (stype-count :nxst new-aignet2)
                   0)
            (equal (stype-count :const new-aignet2)
                   0))))

    Theorem: constprop-iter-preserves-comb-equiv

    (defthm constprop-iter-preserves-comb-equiv
     (b* ((?new-aignet2 (constprop-iter iters aignet gatesimp aignet2)))
       (implies (and (equal (stype-count :po aignet) 1)
                     (equal (stype-count :reg aignet) 0))
                (comb-equiv new-aignet2 aignet))))

    Theorem: normalize-inputs-of-constprop-iter

    (defthm normalize-inputs-of-constprop-iter
     (b* nil
       (implies
            (syntaxp (not (equal aignet2 ''nil)))
            (equal (constprop-iter iters aignet gatesimp aignet2)
                   (let ((aignet2 nil))
                     (constprop-iter iters aignet gatesimp aignet2))))))

    Theorem: constprop-iter-of-pos-fix-iters

    (defthm constprop-iter-of-pos-fix-iters
      (equal (constprop-iter (pos-fix iters)
                             aignet gatesimp aignet2)
             (constprop-iter iters aignet gatesimp aignet2)))

    Theorem: constprop-iter-pos-equiv-congruence-on-iters

    (defthm constprop-iter-pos-equiv-congruence-on-iters
      (implies
           (pos-equiv iters iters-equiv)
           (equal (constprop-iter iters aignet gatesimp aignet2)
                  (constprop-iter iters-equiv aignet gatesimp aignet2)))
      :rule-classes :congruence)

    Theorem: constprop-iter-of-node-list-fix-aignet

    (defthm constprop-iter-of-node-list-fix-aignet
      (equal (constprop-iter iters (node-list-fix aignet)
                             gatesimp aignet2)
             (constprop-iter iters aignet gatesimp aignet2)))

    Theorem: constprop-iter-node-list-equiv-congruence-on-aignet

    (defthm constprop-iter-node-list-equiv-congruence-on-aignet
      (implies
           (node-list-equiv aignet aignet-equiv)
           (equal (constprop-iter iters aignet gatesimp aignet2)
                  (constprop-iter iters aignet-equiv gatesimp aignet2)))
      :rule-classes :congruence)

    Theorem: constprop-iter-of-gatesimp-fix-gatesimp

    (defthm constprop-iter-of-gatesimp-fix-gatesimp
      (equal (constprop-iter iters aignet (gatesimp-fix gatesimp)
                             aignet2)
             (constprop-iter iters aignet gatesimp aignet2)))

    Theorem: constprop-iter-gatesimp-equiv-congruence-on-gatesimp

    (defthm constprop-iter-gatesimp-equiv-congruence-on-gatesimp
      (implies
           (gatesimp-equiv gatesimp gatesimp-equiv)
           (equal (constprop-iter iters aignet gatesimp aignet2)
                  (constprop-iter iters aignet gatesimp-equiv aignet2)))
      :rule-classes :congruence)

    Theorem: constprop-iter-of-node-list-fix-aignet2

    (defthm constprop-iter-of-node-list-fix-aignet2
      (equal (constprop-iter iters
                             aignet gatesimp (node-list-fix aignet2))
             (constprop-iter iters aignet gatesimp aignet2)))

    Theorem: constprop-iter-node-list-equiv-congruence-on-aignet2

    (defthm constprop-iter-node-list-equiv-congruence-on-aignet2
      (implies
           (node-list-equiv aignet2 aignet2-equiv)
           (equal (constprop-iter iters aignet gatesimp aignet2)
                  (constprop-iter iters aignet gatesimp aignet2-equiv)))
      :rule-classes :congruence)