• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
            • Aignet-nxsts-aux
            • Fanin
            • Aignet-outputs
            • Lookup-reg->nxst
            • Aignet-lit-fix
            • Aignet-fanins
            • Stype-count
            • Aignet-nxsts
            • Aignet-idp
            • Aignet-norm
            • Aignet-norm-p
            • Aignet-id-fix
            • Fanin-count
            • Proper-node-listp
            • Fanin-node-p
            • Node-list
              • Node-list-fix
              • Node-listp
              • Node-list-equiv
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Community
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Node-list

    Node-list-equiv

    Basic equivalence relation for node-list structures.

    Definitions and Theorems

    Function: node-list-equiv$inline

    (defun node-list-equiv$inline (x acl2::y)
      (declare (xargs :guard (and (node-listp x)
                                  (node-listp acl2::y))))
      (equal (node-list-fix x)
             (node-list-fix acl2::y)))

    Theorem: node-list-equiv-is-an-equivalence

    (defthm node-list-equiv-is-an-equivalence
      (and (booleanp (node-list-equiv x y))
           (node-list-equiv x x)
           (implies (node-list-equiv x y)
                    (node-list-equiv y x))
           (implies (and (node-list-equiv x y)
                         (node-list-equiv y z))
                    (node-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: node-list-equiv-implies-equal-node-list-fix-1

    (defthm node-list-equiv-implies-equal-node-list-fix-1
      (implies (node-list-equiv x x-equiv)
               (equal (node-list-fix x)
                      (node-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: node-list-fix-under-node-list-equiv

    (defthm node-list-fix-under-node-list-equiv
      (node-list-equiv (node-list-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-node-list-fix-1-forward-to-node-list-equiv

    (defthm equal-of-node-list-fix-1-forward-to-node-list-equiv
      (implies (equal (node-list-fix x) acl2::y)
               (node-list-equiv x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-node-list-fix-2-forward-to-node-list-equiv

    (defthm equal-of-node-list-fix-2-forward-to-node-list-equiv
      (implies (equal x (node-list-fix acl2::y))
               (node-list-equiv x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: node-list-equiv-of-node-list-fix-1-forward

    (defthm node-list-equiv-of-node-list-fix-1-forward
      (implies (node-list-equiv (node-list-fix x)
                                acl2::y)
               (node-list-equiv x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: node-list-equiv-of-node-list-fix-2-forward

    (defthm node-list-equiv-of-node-list-fix-2-forward
      (implies (node-list-equiv x (node-list-fix acl2::y))
               (node-list-equiv x acl2::y))
      :rule-classes :forward-chaining)