• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-with-tracking
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-marked
        • Aignet-complete-copy
        • Aignet-transforms
        • Aignet-eval
        • Semantics
          • Comb-equiv
          • Seq-equiv
          • Seq-equiv-init
          • Invals
          • Outs-comb-equiv
            • Nxsts-comb-equiv
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Semantics

    Outs-comb-equiv

    Combinational equivalence of aignets, considering only primary outputs

    outs-comb-equiv says that two aignets' outputs are combinationally equivalent, that is, corresponding outputs evaluate to the same value under the same input/register assignment.

    Definitions and Theorems

    Theorem: outs-comb-equiv-necc

    (defthm outs-comb-equiv-necc
      (implies (outs-comb-equiv aignet aignet2)
               (equal (equal (output-eval n invals regvals aignet)
                             (output-eval n invals regvals aignet2))
                      t)))

    Theorem: outs-comb-equiv-implies-lit-eval-of-fanin

    (defthm outs-comb-equiv-implies-lit-eval-of-fanin
     (implies
          (outs-comb-equiv aignet aignet2)
          (equal (equal (lit-eval (fanin 0 (lookup-stype n :po aignet))
                                  invals regvals aignet)
                        (lit-eval (fanin 0 (lookup-stype n :po aignet2))
                                  invals regvals aignet2))
                 t)))

    Theorem: outs-comb-equiv-is-an-equivalence

    (defthm outs-comb-equiv-is-an-equivalence
      (and (booleanp (outs-comb-equiv x y))
           (outs-comb-equiv x x)
           (implies (outs-comb-equiv x y)
                    (outs-comb-equiv y x))
           (implies (and (outs-comb-equiv x y)
                         (outs-comb-equiv y z))
                    (outs-comb-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: outs-comb-equiv-implies-equal-output-eval-4

    (defthm outs-comb-equiv-implies-equal-output-eval-4
      (implies (outs-comb-equiv aignet aignet-equiv)
               (equal (output-eval n invals regvals aignet)
                      (output-eval n invals regvals aignet-equiv)))
      :rule-classes (:congruence))

    Theorem: outs-comb-equiv-of-node-list-fix-aignet

    (defthm outs-comb-equiv-of-node-list-fix-aignet
      (equal (outs-comb-equiv (node-list-fix aignet)
                              aignet2)
             (outs-comb-equiv aignet aignet2)))

    Theorem: outs-comb-equiv-node-list-equiv-congruence-on-aignet

    (defthm outs-comb-equiv-node-list-equiv-congruence-on-aignet
      (implies (node-list-equiv aignet aignet-equiv)
               (equal (outs-comb-equiv aignet aignet2)
                      (outs-comb-equiv aignet-equiv aignet2)))
      :rule-classes :congruence)

    Theorem: outs-comb-equiv-of-node-list-fix-aignet2

    (defthm outs-comb-equiv-of-node-list-fix-aignet2
      (equal (outs-comb-equiv aignet (node-list-fix aignet2))
             (outs-comb-equiv aignet aignet2)))

    Theorem: outs-comb-equiv-node-list-equiv-congruence-on-aignet2

    (defthm outs-comb-equiv-node-list-equiv-congruence-on-aignet2
      (implies (node-list-equiv aignet2 aignet2-equiv)
               (equal (outs-comb-equiv aignet aignet2)
                      (outs-comb-equiv aignet aignet2-equiv)))
      :rule-classes :congruence)