Semantics of the instructions with the
Function:
(defun exec-load (funct rd rs1 imm stat feat) (declare (xargs :guard (and (load-funct-p funct) (ubyte5p rd) (ubyte5p rs1) (ubyte12p imm) (statp stat) (featp feat)))) (declare (xargs :guard (and (stat-validp stat feat) (implies (or (load-funct-case funct :lwu) (load-funct-case funct :ld)) (feat-64p feat))))) (let ((__function__ 'exec-load)) (declare (ignorable __function__)) (load-funct-case funct :lb (exec-lb rd rs1 imm stat feat) :lbu (exec-lbu rd rs1 imm stat feat) :lh (exec-lh rd rs1 imm stat feat) :lhu (exec-lhu rd rs1 imm stat feat) :lw (exec-lw rd rs1 imm stat feat) :lwu (exec-lwu rd rs1 imm stat feat) :ld (exec-ld rd rs1 imm stat feat))))
Theorem:
(defthm statp-of-exec-load (b* ((new-stat (exec-load funct rd rs1 imm stat feat))) (statp new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec-load-of-load-funct-fix-funct (equal (exec-load (load-funct-fix funct) rd rs1 imm stat feat) (exec-load funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-load-load-funct-equiv-congruence-on-funct (implies (load-funct-equiv funct funct-equiv) (equal (exec-load funct rd rs1 imm stat feat) (exec-load funct-equiv rd rs1 imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-load-of-ubyte5-fix-rd (equal (exec-load funct (ubyte5-fix rd) rs1 imm stat feat) (exec-load funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-load-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec-load funct rd rs1 imm stat feat) (exec-load funct rd-equiv rs1 imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-load-of-ubyte5-fix-rs1 (equal (exec-load funct rd (ubyte5-fix rs1) imm stat feat) (exec-load funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-load-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec-load funct rd rs1 imm stat feat) (exec-load funct rd rs1-equiv imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-load-of-ubyte12-fix-imm (equal (exec-load funct rd rs1 (ubyte12-fix imm) stat feat) (exec-load funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-load-ubyte12-equiv-congruence-on-imm (implies (acl2::ubyte12-equiv imm imm-equiv) (equal (exec-load funct rd rs1 imm stat feat) (exec-load funct rd rs1 imm-equiv stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-load-of-stat-fix-stat (equal (exec-load funct rd rs1 imm (stat-fix stat) feat) (exec-load funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-load-stat-equiv-congruence-on-stat (implies (stat-equiv stat stat-equiv) (equal (exec-load funct rd rs1 imm stat feat) (exec-load funct rd rs1 imm stat-equiv feat))) :rule-classes :congruence)
Theorem:
(defthm exec-load-of-feat-fix-feat (equal (exec-load funct rd rs1 imm stat (feat-fix feat)) (exec-load funct rd rs1 imm stat feat)))
Theorem:
(defthm exec-load-feat-equiv-congruence-on-feat (implies (feat-equiv feat feat-equiv) (equal (exec-load funct rd rs1 imm stat feat) (exec-load funct rd rs1 imm stat feat-equiv))) :rule-classes :congruence)