Semantics of the
We calculate the effective address.
We read an unsigned 16-bit integer from the effective address,
which is also implicitly zero-extended to
Function:
(defun exec-lhu (rd rs1 imm stat feat) (declare (xargs :guard (and (ubyte5p rd) (ubyte5p rs1) (ubyte12p imm) (statp stat) (featp feat)))) (declare (xargs :guard (stat-validp stat feat))) (let ((__function__ 'exec-lhu)) (declare (ignorable __function__)) (b* ((addr (eff-addr rs1 imm stat feat)) (result (read-memory-unsigned16 addr stat feat)) (stat (write-xreg (ubyte5-fix rd) result stat feat)) (stat (inc4-pc stat feat))) stat)))
Theorem:
(defthm statp-of-exec-lhu (b* ((new-stat (exec-lhu rd rs1 imm stat feat))) (statp new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec-lhu-of-ubyte5-fix-rd (equal (exec-lhu (ubyte5-fix rd) rs1 imm stat feat) (exec-lhu rd rs1 imm stat feat)))
Theorem:
(defthm exec-lhu-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec-lhu rd rs1 imm stat feat) (exec-lhu rd-equiv rs1 imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-lhu-of-ubyte5-fix-rs1 (equal (exec-lhu rd (ubyte5-fix rs1) imm stat feat) (exec-lhu rd rs1 imm stat feat)))
Theorem:
(defthm exec-lhu-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec-lhu rd rs1 imm stat feat) (exec-lhu rd rs1-equiv imm stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-lhu-of-ubyte12-fix-imm (equal (exec-lhu rd rs1 (ubyte12-fix imm) stat feat) (exec-lhu rd rs1 imm stat feat)))
Theorem:
(defthm exec-lhu-ubyte12-equiv-congruence-on-imm (implies (acl2::ubyte12-equiv imm imm-equiv) (equal (exec-lhu rd rs1 imm stat feat) (exec-lhu rd rs1 imm-equiv stat feat))) :rule-classes :congruence)
Theorem:
(defthm exec-lhu-of-stat-fix-stat (equal (exec-lhu rd rs1 imm (stat-fix stat) feat) (exec-lhu rd rs1 imm stat feat)))
Theorem:
(defthm exec-lhu-stat-equiv-congruence-on-stat (implies (stat-equiv stat stat-equiv) (equal (exec-lhu rd rs1 imm stat feat) (exec-lhu rd rs1 imm stat-equiv feat))) :rule-classes :congruence)
Theorem:
(defthm exec-lhu-of-feat-fix-feat (equal (exec-lhu rd rs1 imm stat (feat-fix feat)) (exec-lhu rd rs1 imm stat feat)))
Theorem:
(defthm exec-lhu-feat-equiv-congruence-on-feat (implies (feat-equiv feat feat-equiv) (equal (exec-lhu rd rs1 imm stat feat) (exec-lhu rd rs1 imm stat feat-equiv))) :rule-classes :congruence)