• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
            • Aignet-nxsts-aux
            • Fanin
            • Aignet-outputs
            • Lookup-reg->nxst
            • Aignet-lit-fix
            • Aignet-fanins
            • Stype-count
            • Aignet-nxsts
            • Aignet-idp
              • Aignet-norm
              • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Network

    Aignet-idp

    Check whether a node ID is in bounds for this network.

    Signature
    (aignet-idp id aignet) → *
    Arguments
    id — Guard (natp id).
    aignet — Guard (node-listp aignet).

    Definitions and Theorems

    Function: aignet-idp

    (defun aignet-idp (id aignet)
      (declare (xargs :guard (and (natp id) (node-listp aignet))))
      (let ((__function__ 'aignet-idp))
        (declare (ignorable __function__))
        (<= (lnfix id) (fanin-count aignet))))

    Theorem: aignet-idp-of-nfix-id

    (defthm aignet-idp-of-nfix-id
      (equal (aignet-idp (nfix id) aignet)
             (aignet-idp id aignet)))

    Theorem: aignet-idp-nat-equiv-congruence-on-id

    (defthm aignet-idp-nat-equiv-congruence-on-id
      (implies (nat-equiv id id-equiv)
               (equal (aignet-idp id aignet)
                      (aignet-idp id-equiv aignet)))
      :rule-classes :congruence)

    Theorem: aignet-idp-of-node-list-fix-aignet

    (defthm aignet-idp-of-node-list-fix-aignet
      (equal (aignet-idp id (node-list-fix aignet))
             (aignet-idp id aignet)))

    Theorem: aignet-idp-node-list-equiv-congruence-on-aignet

    (defthm aignet-idp-node-list-equiv-congruence-on-aignet
      (implies (node-list-equiv aignet aignet-equiv)
               (equal (aignet-idp id aignet)
                      (aignet-idp id aignet-equiv)))
      :rule-classes :congruence)

    Theorem: bound-when-aignet-idp

    (defthm bound-when-aignet-idp
      (implies (aignet-idp id aignet)
               (<= (nfix id) (fanin-count aignet))))

    Theorem: aignet-idp-in-extension

    (defthm aignet-idp-in-extension
      (implies (and (aignet-extension-p aignet2 aignet)
                    (aignet-idp id aignet))
               (aignet-idp id aignet2)))

    Theorem: lookup-id-implies-aignet-idp

    (defthm lookup-id-implies-aignet-idp
      (implies (consp (lookup-id id aignet))
               (aignet-idp id aignet)))

    Theorem: aignet-idp-of-fanin-count-of-extension

    (defthm aignet-idp-of-fanin-count-of-extension
      (implies (aignet-extension-p aignet prev)
               (aignet-idp (fanin-count prev) aignet)))

    Theorem: aignet-idp-of-0

    (defthm aignet-idp-of-0
      (aignet-idp 0 aignet))

    Theorem: aignet-extension-simplify-lookup-id

    (defthm aignet-extension-simplify-lookup-id
      (implies (and (aignet-extension-binding)
                    (aignet-idp id orig))
               (equal (lookup-id id new)
                      (lookup-id id orig))))

    Theorem: aignet-extension-simplify-aignet-idp

    (defthm aignet-extension-simplify-aignet-idp
      (implies (and (aignet-extension-binding)
                    (aignet-idp id orig))
               (aignet-idp id new)))