• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
            • Aignet-nxsts-aux
            • Fanin
            • Aignet-outputs
            • Lookup-reg->nxst
            • Aignet-lit-fix
            • Aignet-fanins
            • Stype-count
            • Aignet-nxsts
            • Aignet-idp
            • Aignet-norm
            • Aignet-norm-p
            • Aignet-id-fix
            • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Network

    Fanin-count

    Number of fanin nodes in the list of nodes

    Signature
    (fanin-count x) → *
    Arguments
    x — Guard (node-listp x).

    This gives the ID of the last fanin node in the list.

    Definitions and Theorems

    Function: fanin-count

    (defun fanin-count (x)
      (declare (xargs :guard (node-listp x)))
      (let ((__function__ 'fanin-count))
        (declare (ignorable __function__))
        (if (atom x)
            0
          (+ (if (fanin-node-p (car x)) 1 0)
             (fanin-count (cdr x))))))

    Theorem: fanin-count-of-cons

    (defthm fanin-count-of-cons
      (equal (fanin-count (cons a x))
             (+ (if (fanin-node-p a) 1 0)
                (fanin-count x))))

    Theorem: fanin-count-of-atom

    (defthm fanin-count-of-atom
      (implies (not (consp x))
               (equal (fanin-count x) 0))
      :rule-classes ((:rewrite :backchain-limit-lst 1)))

    Theorem: fanin-count-of-cdr-strong

    (defthm fanin-count-of-cdr-strong
      (implies (and (consp x) (fanin-node-p (car x)))
               (equal (fanin-count (cdr x))
                      (+ -1 (fanin-count x)))))

    Theorem: fanin-count-of-cdr-weak

    (defthm fanin-count-of-cdr-weak
      (<= (fanin-count (cdr x))
          (fanin-count x))
      :rule-classes :linear)

    Theorem: fanin-count-of-node-list-fix-x

    (defthm fanin-count-of-node-list-fix-x
      (equal (fanin-count (node-list-fix x))
             (fanin-count x)))

    Theorem: fanin-count-node-list-equiv-congruence-on-x

    (defthm fanin-count-node-list-equiv-congruence-on-x
      (implies (node-list-equiv x x-equiv)
               (equal (fanin-count x)
                      (fanin-count x-equiv)))
      :rule-classes :congruence)