• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
            • Aignet-nxsts-aux
            • Fanin
            • Aignet-outputs
            • Lookup-reg->nxst
            • Aignet-lit-fix
            • Aignet-fanins
              • Stype-count
              • Aignet-nxsts
              • Aignet-idp
              • Aignet-norm
              • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Network

    Aignet-fanins

    Signature
    (aignet-fanins aignet) → fanins
    Arguments
    aignet — Guard (node-listp aignet).
    Returns
    fanins — Type (node-listp fanins).

    Definitions and Theorems

    Function: aignet-fanins

    (defun aignet-fanins (aignet)
      (declare (xargs :guard (node-listp aignet)))
      (let ((__function__ 'aignet-fanins))
        (declare (ignorable __function__))
        (if (atom aignet)
            nil
          (if (fanin-node-p (car aignet))
              (cons (node-fix (car aignet))
                    (aignet-fanins (cdr aignet)))
            (aignet-fanins (cdr aignet))))))

    Theorem: node-listp-of-aignet-fanins

    (defthm node-listp-of-aignet-fanins
      (b* ((fanins (aignet-fanins aignet)))
        (node-listp fanins))
      :rule-classes :rewrite)

    Theorem: fanin-count-of-aignet-fanins

    (defthm fanin-count-of-aignet-fanins
      (b* ((?fanins (aignet-fanins aignet)))
        (equal (fanin-count fanins)
               (fanin-count aignet))))

    Theorem: lookup-id-of-aignet-fanins

    (defthm lookup-id-of-aignet-fanins
      (b* ((?fanins (aignet-fanins aignet)))
        (equal (lookup-id n fanins)
               (aignet-fanins (lookup-id n aignet)))))

    Theorem: stype-count-of-aignet-fanins

    (defthm stype-count-of-aignet-fanins
      (b* ((?fanins (aignet-fanins aignet)))
        (equal (stype-count stype fanins)
               (if (equal (ctype stype) (out-ctype))
                   0
                 (stype-count stype aignet)))))

    Theorem: aignet-fanins-of-node-list-fix-aignet

    (defthm aignet-fanins-of-node-list-fix-aignet
      (equal (aignet-fanins (node-list-fix aignet))
             (aignet-fanins aignet)))

    Theorem: aignet-fanins-node-list-equiv-congruence-on-aignet

    (defthm aignet-fanins-node-list-equiv-congruence-on-aignet
      (implies (node-list-equiv aignet aignet-equiv)
               (equal (aignet-fanins aignet)
                      (aignet-fanins aignet-equiv)))
      :rule-classes :congruence)

    Theorem: lookup-stype-of-aignet-fanins

    (defthm lookup-stype-of-aignet-fanins
      (b* ((?fanins (aignet-fanins aignet)))
        (equal (lookup-stype n stype fanins)
               (if (equal (ctype stype) (out-ctype))
                   nil
                 (aignet-fanins (lookup-stype n stype aignet))))))

    Theorem: car-of-aignet-fanins

    (defthm car-of-aignet-fanins
      (b* ((?fanins (aignet-fanins aignet)))
        (implies (fanin-node-p (car aignet))
                 (equal (car fanins)
                        (node-fix (car aignet))))))

    Theorem: cdr-of-aignet-fanins

    (defthm cdr-of-aignet-fanins
      (b* ((?fanins (aignet-fanins aignet)))
        (implies (fanin-node-p (car aignet))
                 (equal (cdr fanins)
                        (aignet-fanins (cdr aignet))))))

    Theorem: aignet-fanins-of-append-non-fanins

    (defthm aignet-fanins-of-append-non-fanins
      (implies (equal (fanin-count first) 0)
               (equal (aignet-fanins (append first x))
                      (aignet-fanins x))))

    Theorem: aignet-fanins-idempotent

    (defthm aignet-fanins-idempotent
      (equal (aignet-fanins (aignet-fanins x))
             (aignet-fanins x)))

    Theorem: fanin-of-aignet-fanins

    (defthm fanin-of-aignet-fanins
      (implies (fanin-node-p (car aignet))
               (equal (fanin ftype (aignet-fanins aignet))
                      (fanin ftype aignet))))

    Theorem: aignet-fanins-of-cons

    (defthm aignet-fanins-of-cons
      (equal (aignet-fanins (cons node x))
             (if (fanin-node-p node)
                 (cons (node-fix node) (aignet-fanins x))
               (aignet-fanins x))))