• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
            • Aignet-nxsts-aux
            • Fanin
            • Aignet-outputs
            • Lookup-reg->nxst
            • Aignet-lit-fix
            • Aignet-fanins
            • Stype-count
            • Aignet-nxsts
            • Aignet-idp
            • Aignet-norm
              • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Network

    Aignet-norm

    Signature
    (aignet-norm aignet) → norm
    Arguments
    aignet — Guard (node-listp aignet).
    Returns
    norm — Type (node-listp norm).

    Definitions and Theorems

    Function: aignet-norm

    (defun aignet-norm (aignet)
      (declare (xargs :guard (node-listp aignet)))
      (let ((__function__ 'aignet-norm))
        (declare (ignorable __function__))
        (append (aignet-nxsts aignet)
                (aignet-outputs aignet)
                (aignet-fanins aignet))))

    Theorem: node-listp-of-aignet-norm

    (defthm node-listp-of-aignet-norm
      (b* ((norm (aignet-norm aignet)))
        (node-listp norm))
      :rule-classes :rewrite)

    Theorem: fanin-count-of-aignet-norm

    (defthm fanin-count-of-aignet-norm
      (b* ((?norm (aignet-norm aignet)))
        (equal (fanin-count norm)
               (fanin-count aignet))))

    Theorem: stype-count-of-aignet-norm

    (defthm stype-count-of-aignet-norm
      (b* ((?norm (aignet-norm aignet)))
        (implies (not (equal (stype-fix stype) :nxst))
                 (equal (stype-count stype norm)
                        (stype-count stype aignet)))))

    Theorem: lookup-id-of-aignet-norm

    (defthm lookup-id-of-aignet-norm
      (b* ((?norm (aignet-norm aignet)))
        (equal (lookup-id n norm)
               (aignet-fanins (lookup-id n aignet)))))

    Theorem: lookup-reg-of-aignet-norm

    (defthm lookup-reg-of-aignet-norm
      (b* ((?norm (aignet-norm aignet)))
        (equal (lookup-stype n :reg norm)
               (aignet-fanins (lookup-stype n :reg aignet)))))

    Theorem: lookup-pi-of-aignet-norm

    (defthm lookup-pi-of-aignet-norm
      (b* ((?norm (aignet-norm aignet)))
        (equal (lookup-stype n :pi norm)
               (aignet-fanins (lookup-stype n :pi aignet)))))

    Theorem: po-fanin-of-aignet-norm

    (defthm po-fanin-of-aignet-norm
      (b* ((?norm (aignet-norm aignet)))
        (equal (fanin 0 (lookup-stype n :po norm))
               (fanin 0 (lookup-stype n :po aignet)))))

    Theorem: lookup-reg->nxst-of-aignet-norm

    (defthm lookup-reg->nxst-of-aignet-norm
      (b* ((?norm (aignet-norm aignet)))
        (equal (lookup-reg->nxst n norm)
               (lookup-reg->nxst n aignet))))

    Theorem: aignet-norm-idempotent

    (defthm aignet-norm-idempotent
      (equal (aignet-norm (aignet-norm x))
             (aignet-norm x)))

    Theorem: aignet-norm-of-cons

    (defthm aignet-norm-of-cons
      (equal (aignet-norm (cons node (aignet-norm x)))
             (aignet-norm (cons node x))))

    Theorem: aignet-norm-of-node-list-fix-aignet

    (defthm aignet-norm-of-node-list-fix-aignet
      (equal (aignet-norm (node-list-fix aignet))
             (aignet-norm aignet)))

    Theorem: aignet-norm-node-list-equiv-congruence-on-aignet

    (defthm aignet-norm-node-list-equiv-congruence-on-aignet
      (implies (node-list-equiv aignet aignet-equiv)
               (equal (aignet-norm aignet)
                      (aignet-norm aignet-equiv)))
      :rule-classes :congruence)