• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
            • Aignet-nxsts-aux
              • Fanin
              • Aignet-outputs
              • Lookup-reg->nxst
              • Aignet-lit-fix
              • Aignet-fanins
              • Stype-count
              • Aignet-nxsts
              • Aignet-idp
              • Aignet-norm
              • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Network

    Aignet-nxsts-aux

    Signature
    (aignet-nxsts-aux n aignet) → nxsts
    Arguments
    n — Guard (natp n).
    aignet — Guard (node-listp aignet).
    Returns
    nxsts — Type (node-listp nxsts).

    Definitions and Theorems

    Function: aignet-nxsts-aux

    (defun aignet-nxsts-aux (n aignet)
      (declare (xargs :guard (and (natp n) (node-listp aignet))))
      (declare (xargs :guard (<= n (stype-count :reg aignet))))
      (let ((__function__ 'aignet-nxsts-aux))
        (declare (ignorable __function__))
        (if (zp n)
            nil
          (cons (nxst-node (lookup-reg->nxst (1- n) aignet)
                           (1- n))
                (aignet-nxsts-aux (1- n) aignet)))))

    Theorem: node-listp-of-aignet-nxsts-aux

    (defthm node-listp-of-aignet-nxsts-aux
      (b* ((nxsts (aignet-nxsts-aux n aignet)))
        (node-listp nxsts))
      :rule-classes :rewrite)

    Theorem: fanin-count-of-aignet-nxsts-aux

    (defthm fanin-count-of-aignet-nxsts-aux
      (b* ((?nxsts (aignet-nxsts-aux n aignet)))
        (equal (fanin-count nxsts) 0)))

    Theorem: lookup-id-of-aignet-nxsts-aux

    (defthm lookup-id-of-aignet-nxsts-aux
      (b* ((?nxsts (aignet-nxsts-aux n aignet)))
        (equal (lookup-id k nxsts) nil)))

    Theorem: stype-count-of-aignet-nxsts-aux

    (defthm stype-count-of-aignet-nxsts-aux
      (b* ((?nxsts (aignet-nxsts-aux n aignet)))
        (equal (stype-count stype nxsts)
               (if (equal (stype-fix stype) :nxst)
                   (nfix n)
                 0))))

    Theorem: aignet-nxsts-aux-of-nfix-n

    (defthm aignet-nxsts-aux-of-nfix-n
      (equal (aignet-nxsts-aux (nfix n) aignet)
             (aignet-nxsts-aux n aignet)))

    Theorem: aignet-nxsts-aux-nat-equiv-congruence-on-n

    (defthm aignet-nxsts-aux-nat-equiv-congruence-on-n
      (implies (nat-equiv n n-equiv)
               (equal (aignet-nxsts-aux n aignet)
                      (aignet-nxsts-aux n-equiv aignet)))
      :rule-classes :congruence)

    Theorem: aignet-nxsts-aux-of-node-list-fix-aignet

    (defthm aignet-nxsts-aux-of-node-list-fix-aignet
      (equal (aignet-nxsts-aux n (node-list-fix aignet))
             (aignet-nxsts-aux n aignet)))

    Theorem: aignet-nxsts-aux-node-list-equiv-congruence-on-aignet

    (defthm aignet-nxsts-aux-node-list-equiv-congruence-on-aignet
      (implies (node-list-equiv aignet aignet-equiv)
               (equal (aignet-nxsts-aux n aignet)
                      (aignet-nxsts-aux n aignet-equiv)))
      :rule-classes :congruence)

    Theorem: lookup-stype-of-aignet-nxsts-aux

    (defthm lookup-stype-of-aignet-nxsts-aux
      (b* ((?nxsts (aignet-nxsts-aux n aignet)))
        (implies (not (equal (stype-fix stype) :nxst))
                 (equal (lookup-stype k stype nxsts)
                        nil))))

    Theorem: lookup-reg->nxst-of-aignet-nxsts-aux

    (defthm lookup-reg->nxst-of-aignet-nxsts-aux
      (b* ((?nxsts (aignet-nxsts-aux n aignet)))
        (implies (<= (fanin-count aignet)
                     (fanin-count rest))
                 (equal (lookup-reg->nxst k (append nxsts rest))
                        (if (and (< (nfix k) (nfix n))
                                 (< (nfix k) (stype-count :reg rest)))
                            (lookup-reg->nxst k aignet)
                          (lookup-reg->nxst k rest))))))

    Theorem: aignet-nxsts-aux-of-append-aignet-nxsts-aux

    (defthm aignet-nxsts-aux-of-append-aignet-nxsts-aux
     (implies
        (and (<= (nfix n) (stype-count :reg rest))
             (<= (fanin-count x) (fanin-count rest))
             (<= (nfix n) (nfix m)))
        (equal (aignet-nxsts-aux n (append (aignet-nxsts-aux m x) rest))
               (aignet-nxsts-aux n x))))

    Theorem: aignet-nxsts-aux-of-cons

    (defthm aignet-nxsts-aux-of-cons
     (implies
      (<= (nfix n) (stype-count :reg x))
      (equal
        (aignet-nxsts-aux n (cons node x))
        (if
          (and (equal (stype node) :nxst)
               (< (nxst-node->reg node) (nfix n)))
          (update-nth (- (nfix n) (+ 1 (nxst-node->reg node)))
                      (nxst-node (aignet-lit-fix (nxst-node->fanin node)
                                                 x)
                                 (nxst-node->reg node))
                      (aignet-nxsts-aux n x))
          (aignet-nxsts-aux n x)))))