• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
              • Aignet-nxsts-aux
              • Fanin
              • Aignet-outputs
              • Lookup-reg->nxst
              • Aignet-lit-fix
              • Aignet-fanins
              • Stype-count
              • Aignet-nxsts
              • Aignet-idp
              • Aignet-norm
              • Aignet-norm-p
              • Aignet-id-fix
              • Fanin-count
              • Proper-node-listp
              • Fanin-node-p
              • Node-list
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Network

    Aignet-outputs-aux

    Signature
    (aignet-outputs-aux n aignet) → outputs
    Arguments
    n — Guard (natp n).
    aignet — Guard (node-listp aignet).
    Returns
    outputs — Type (node-listp outputs).

    Definitions and Theorems

    Function: aignet-outputs-aux

    (defun aignet-outputs-aux (n aignet)
      (declare (xargs :guard (and (natp n) (node-listp aignet))))
      (declare (xargs :guard (<= n (stype-count :po aignet))))
      (let ((__function__ 'aignet-outputs-aux))
        (declare (ignorable __function__))
        (if (zp n)
            nil
          (cons (po-node (fanin 0 (lookup-stype (1- n) :po aignet)))
                (aignet-outputs-aux (1- n) aignet)))))

    Theorem: node-listp-of-aignet-outputs-aux

    (defthm node-listp-of-aignet-outputs-aux
      (b* ((outputs (aignet-outputs-aux n aignet)))
        (node-listp outputs))
      :rule-classes :rewrite)

    Theorem: fanin-count-of-aignet-outputs-aux

    (defthm fanin-count-of-aignet-outputs-aux
      (b* ((?outputs (aignet-outputs-aux n aignet)))
        (equal (fanin-count outputs) 0)))

    Theorem: lookup-id-of-aignet-outputs-aux

    (defthm lookup-id-of-aignet-outputs-aux
      (b* ((?outputs (aignet-outputs-aux n aignet)))
        (equal (lookup-id k outputs) nil)))

    Theorem: stype-count-of-aignet-outputs-aux

    (defthm stype-count-of-aignet-outputs-aux
      (b* ((?outputs (aignet-outputs-aux n aignet)))
        (equal (stype-count stype outputs)
               (if (equal (stype-fix stype) :po)
                   (nfix n)
                 0))))

    Theorem: aignet-outputs-aux-of-nfix-n

    (defthm aignet-outputs-aux-of-nfix-n
      (equal (aignet-outputs-aux (nfix n) aignet)
             (aignet-outputs-aux n aignet)))

    Theorem: aignet-outputs-aux-nat-equiv-congruence-on-n

    (defthm aignet-outputs-aux-nat-equiv-congruence-on-n
      (implies (nat-equiv n n-equiv)
               (equal (aignet-outputs-aux n aignet)
                      (aignet-outputs-aux n-equiv aignet)))
      :rule-classes :congruence)

    Theorem: aignet-outputs-aux-of-node-list-fix-aignet

    (defthm aignet-outputs-aux-of-node-list-fix-aignet
      (equal (aignet-outputs-aux n (node-list-fix aignet))
             (aignet-outputs-aux n aignet)))

    Theorem: aignet-outputs-aux-node-list-equiv-congruence-on-aignet

    (defthm aignet-outputs-aux-node-list-equiv-congruence-on-aignet
      (implies (node-list-equiv aignet aignet-equiv)
               (equal (aignet-outputs-aux n aignet)
                      (aignet-outputs-aux n aignet-equiv)))
      :rule-classes :congruence)

    Theorem: aignet-outputs-aux-of-lookup-po

    (defthm aignet-outputs-aux-of-lookup-po
     (b* nil
      (implies (and (<= (nfix n) (+ 1 (nfix k)))
                    (< (nfix k) (stype-count :po aignet)))
               (equal (aignet-outputs-aux n (lookup-stype k :po aignet))
                      (aignet-outputs-aux n aignet)))))

    Theorem: lookup-stype-of-aignet-outputs-aux

    (defthm lookup-stype-of-aignet-outputs-aux
      (b* ((?outputs (aignet-outputs-aux n aignet)))
        (implies
             (<= (nfix n) (stype-count :po aignet))
             (equal (lookup-stype k stype outputs)
                    (if (and (equal (stype-fix stype) :po)
                             (< (nfix k) (nfix n)))
                        (aignet-outputs-aux (+ 1 (nfix k))
                                            (lookup-stype k :po aignet))
                      nil)))))

    Theorem: lookup-reg->nxst-of-append-aignet-outputs-aux

    (defthm lookup-reg->nxst-of-append-aignet-outputs-aux
      (b* ((?outputs (aignet-outputs-aux n aignet)))
        (equal (lookup-reg->nxst k (append outputs rest))
               (lookup-reg->nxst k rest))))

    Theorem: car-of-aignet-outputs-aux

    (defthm car-of-aignet-outputs-aux
      (b* ((?outputs (aignet-outputs-aux n aignet)))
        (implies (posp n)
                 (equal (car outputs)
                        (po-node (fanin 0
                                        (lookup-stype (1- (nfix n))
                                                      :po aignet)))))))

    Theorem: consp-of-aignet-outputs-aux

    (defthm consp-of-aignet-outputs-aux
      (b* ((?outputs (aignet-outputs-aux n aignet)))
        (equal (consp outputs) (posp n))))

    Theorem: aignet-outputs-aux-of-append-aignet-outputs-aux

    (defthm aignet-outputs-aux-of-append-aignet-outputs-aux
     (b* nil
      (implies
        (and (equal (stype-count :po rest) 0)
             (<= (nfix n) (nfix m))
             (<= (nfix m) (stype-count :po x))
             (<= (fanin-count x) (fanin-count rest)))
        (equal
             (aignet-outputs-aux n
                                 (append (aignet-outputs-aux m x) rest))
             (aignet-outputs-aux n x)))))

    Theorem: aignet-outputs-aux-of-append-non-outputs

    (defthm aignet-outputs-aux-of-append-non-outputs
      (implies (equal (stype-count :po first) 0)
               (equal (aignet-outputs-aux n (append first x))
                      (aignet-outputs-aux n x))))

    Theorem: aignet-outputs-aux-of-cons

    (defthm aignet-outputs-aux-of-cons
      (implies (<= (nfix n) (stype-count :po x))
               (equal (aignet-outputs-aux n (cons node x))
                      (aignet-outputs-aux n x))))