• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-with-tracking
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-marked
        • Aignet-complete-copy
        • Aignet-transforms
          • Aignet-output-ranges
          • Aignet-comb-transforms
            • Fraig
            • Parametrize
            • Observability-fix
              • Observability-fix-hyps/concls
              • Observability-fix-input-copies
              • Observability-fixed-inputs
              • Observability-fixed-regs
              • Observability-fix-hyp/concl
              • Observability-fix-lit
              • M-assum-n-output-observability
              • Observability-fix-outs
              • Observability-fix-nxsts
              • Observability-split-supergate-aux
              • Observability-fix-core
              • Observability-split-supergate
                • Aignet-build-wide-and
                • Observability-config
                • Observability-fix!
                • Observability-size-check
                • M-assum-n-output-observability-config
              • Constprop
              • Apply-m-assumption-n-output-output-transform-default
              • Balance
              • Apply-n-output-comb-transform-default
              • Apply-comb-transform-default
              • Obs-constprop
              • Rewrite
              • Comb-transform
              • Abc-comb-simplify
              • Prune
              • Rewrite!
              • M-assumption-n-output-comb-transform->name
              • N-output-comb-transform->name
              • Comb-transform->name
              • N-output-comb-transformlist
              • M-assumption-n-output-comb-transformlist
              • Comb-transformlist
              • Apply-comb-transform
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Observability-fix

    Observability-split-supergate

    Signature
    (observability-split-supergate id config aignet) 
      → 
    (mv hyps rest)
    Arguments
    id — Guard (natp id).
    config — Guard (observability-config-p config).
    Returns
    hyps — Type (lit-listp hyps).
    rest — Type (lit-listp rest).

    Definitions and Theorems

    Function: observability-split-supergate

    (defun observability-split-supergate (id config aignet)
     (declare (xargs :stobjs (aignet)))
     (declare (xargs :guard (and (natp id)
                                 (observability-config-p config))))
     (declare (xargs :guard (and (id-existsp id aignet)
                                 (not (equal (id->type id aignet)
                                             (out-type))))))
     (let ((__function__ 'observability-split-supergate))
      (declare (ignorable __function__))
      (b*
       ((full-size (count-gates-mark id aignet))
        ((local-stobjs aignet-refcounts)
         (mv hyps rest aignet-refcounts))
        (aignet-refcounts (resize-u32 (+ 1 (lnfix id))
                                      aignet-refcounts))
        ((mv lits &)
         (lit-collect-supergate (make-lit id 0)
                                t nil 1000 nil aignet-refcounts aignet))
        (- (cw "Observability supergate: ~x0 lits~%"
               (len lits)))
        ((mv hyps rest)
         (observability-split-supergate-aux
              lits config full-size aignet))
        (- (cw "Observability hyp lits: ~x0 concl: ~x1~%"
               (len hyps)
               (len rest))))
       (mv hyps rest aignet-refcounts))))

    Theorem: lit-listp-of-observability-split-supergate.hyps

    (defthm lit-listp-of-observability-split-supergate.hyps
      (b* (((mv ?hyps common-lisp::?rest)
            (observability-split-supergate id config aignet)))
        (lit-listp hyps))
      :rule-classes :rewrite)

    Theorem: lit-listp-of-observability-split-supergate.rest

    (defthm lit-listp-of-observability-split-supergate.rest
      (b* (((mv ?hyps common-lisp::?rest)
            (observability-split-supergate id config aignet)))
        (lit-listp rest))
      :rule-classes :rewrite)

    Theorem: aignet-lit-listp-of-observability-split-supergate

    (defthm aignet-lit-listp-of-observability-split-supergate
     (b* (((mv ?hyps common-lisp::?rest)
           (observability-split-supergate id config aignet)))
       (implies
            (and (aignet-idp id aignet)
                 (not (equal (ctype (stype (car (lookup-id id aignet))))
                             :output)))
            (and (aignet-lit-listp hyps aignet)
                 (aignet-lit-listp rest aignet)))))

    Theorem: eval-of-observability-split-supergate

    (defthm eval-of-observability-split-supergate
     (b* (((mv ?hyps common-lisp::?rest)
           (observability-split-supergate id config aignet)))
       (equal
            (b-and (aignet-eval-conjunction hyps invals regvals aignet)
                   (aignet-eval-conjunction rest invals regvals aignet))
            (id-eval id invals regvals aignet))))

    Theorem: observability-split-supergate-of-nfix-id

    (defthm observability-split-supergate-of-nfix-id
      (equal (observability-split-supergate (nfix id)
                                            config aignet)
             (observability-split-supergate id config aignet)))

    Theorem: observability-split-supergate-nat-equiv-congruence-on-id

    (defthm observability-split-supergate-nat-equiv-congruence-on-id
     (implies
         (nat-equiv id id-equiv)
         (equal (observability-split-supergate id config aignet)
                (observability-split-supergate id-equiv config aignet)))
     :rule-classes :congruence)

    Theorem: observability-split-supergate-of-observability-config-fix-config

    (defthm
       observability-split-supergate-of-observability-config-fix-config
      (equal (observability-split-supergate
                  id (observability-config-fix config)
                  aignet)
             (observability-split-supergate id config aignet)))

    Theorem: observability-split-supergate-observability-config-equiv-congruence-on-config

    (defthm
     observability-split-supergate-observability-config-equiv-congruence-on-config
     (implies
         (observability-config-equiv config config-equiv)
         (equal (observability-split-supergate id config aignet)
                (observability-split-supergate id config-equiv aignet)))
     :rule-classes :congruence)

    Theorem: observability-split-supergate-of-node-list-fix-aignet

    (defthm observability-split-supergate-of-node-list-fix-aignet
     (equal
        (observability-split-supergate id config (node-list-fix aignet))
        (observability-split-supergate id config aignet)))

    Theorem: observability-split-supergate-node-list-equiv-congruence-on-aignet

    (defthm
     observability-split-supergate-node-list-equiv-congruence-on-aignet
     (implies
         (node-list-equiv aignet aignet-equiv)
         (equal (observability-split-supergate id config aignet)
                (observability-split-supergate id config aignet-equiv)))
     :rule-classes :congruence)