• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
      • Std/lists
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/osets
      • Std/io
      • Std/basic
      • Std/system
      • Std/typed-lists
      • Std/bitsets
      • Std/testing
      • Std/typed-alists
        • Symbol-symbol-alistp
        • String-string-alistp
          • Symbol-string-alistp
          • Symbol-pseudoeventform-alistp
          • Symbol-pseudoterm-alistp
          • String-symbollist-alistp
          • Symbol-pos-alistp
          • Cons-pos-alistp
          • Symbol-symbollist-alistp
          • Symbol-truelist-alistp
          • Keyword-symbol-alistp
          • String-stringlist-alistp
          • Keyword-truelist-alistp
          • Symbol-nat-alistp
          • String-symbol-alistp
          • Keyword-to-keyword-value-list-alistp
          • Std/typed-alists/symbol-alistp
        • Std/stobjs
      • Community
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Std/typed-alists

    String-string-alistp

    Recognize alists from strings to strings.

    This is an ordinary std::defalist.

    Function: string-string-alistp

    (defun string-string-alistp (x)
      (declare (xargs :guard t))
      (if (consp x)
          (and (consp (car x))
               (stringp (caar x))
               (stringp (cdar x))
               (string-string-alistp (cdr x)))
        (null x)))

    Definitions and Theorems

    Function: string-string-alistp

    (defun string-string-alistp (x)
      (declare (xargs :guard t))
      (if (consp x)
          (and (consp (car x))
               (stringp (caar x))
               (stringp (cdar x))
               (string-string-alistp (cdr x)))
        (null x)))

    Theorem: string-string-alistp-of-revappend

    (defthm string-string-alistp-of-revappend
      (equal (string-string-alistp (revappend x y))
             (and (string-string-alistp (list-fix x))
                  (string-string-alistp y)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-remove

    (defthm string-string-alistp-of-remove
      (implies (string-string-alistp x)
               (string-string-alistp (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-last

    (defthm string-string-alistp-of-last
      (implies (string-string-alistp (double-rewrite x))
               (string-string-alistp (last x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-nthcdr

    (defthm string-string-alistp-of-nthcdr
      (implies (string-string-alistp (double-rewrite x))
               (string-string-alistp (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-butlast

    (defthm string-string-alistp-of-butlast
      (implies (string-string-alistp (double-rewrite x))
               (string-string-alistp (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-update-nth

    (defthm string-string-alistp-of-update-nth
      (implies (string-string-alistp (double-rewrite x))
               (iff (string-string-alistp (update-nth n y x))
                    (and (and (consp y)
                              (stringp (car y))
                              (stringp (cdr y)))
                         (or (<= (nfix n) (len x))
                             (and (consp nil)
                                  (stringp (car nil))
                                  (stringp (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-repeat

    (defthm string-string-alistp-of-repeat
      (iff (string-string-alistp (repeat n x))
           (or (and (consp x)
                    (stringp (car x))
                    (stringp (cdr x)))
               (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-take

    (defthm string-string-alistp-of-take
      (implies (string-string-alistp (double-rewrite x))
               (iff (string-string-alistp (take n x))
                    (or (and (consp nil)
                             (stringp (car nil))
                             (stringp (cdr nil)))
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-union-equal

    (defthm string-string-alistp-of-union-equal
      (equal (string-string-alistp (union-equal x y))
             (and (string-string-alistp (list-fix x))
                  (string-string-alistp (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-intersection-equal-2

    (defthm string-string-alistp-of-intersection-equal-2
      (implies (string-string-alistp (double-rewrite y))
               (string-string-alistp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-intersection-equal-1

    (defthm string-string-alistp-of-intersection-equal-1
      (implies (string-string-alistp (double-rewrite x))
               (string-string-alistp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-set-difference-equal

    (defthm string-string-alistp-of-set-difference-equal
      (implies (string-string-alistp x)
               (string-string-alistp (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-when-subsetp-equal

    (defthm string-string-alistp-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (string-string-alistp y))
                    (equal (string-string-alistp x)
                           (true-listp x)))
           (implies (and (string-string-alistp y)
                         (subsetp-equal x y))
                    (equal (string-string-alistp x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-rcons

    (defthm string-string-alistp-of-rcons
      (iff (string-string-alistp (rcons a x))
           (and (and (consp a)
                     (stringp (car a))
                     (stringp (cdr a)))
                (string-string-alistp (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-append

    (defthm string-string-alistp-of-append
      (equal (string-string-alistp (append a b))
             (and (string-string-alistp (list-fix a))
                  (string-string-alistp b)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-rev

    (defthm string-string-alistp-of-rev
      (equal (string-string-alistp (rev x))
             (string-string-alistp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-duplicated-members

    (defthm string-string-alistp-of-duplicated-members
      (implies (string-string-alistp x)
               (string-string-alistp (duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-difference

    (defthm string-string-alistp-of-difference
      (implies (string-string-alistp x)
               (string-string-alistp (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-intersect-2

    (defthm string-string-alistp-of-intersect-2
      (implies (string-string-alistp y)
               (string-string-alistp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-intersect-1

    (defthm string-string-alistp-of-intersect-1
      (implies (string-string-alistp x)
               (string-string-alistp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-union

    (defthm string-string-alistp-of-union
      (iff (string-string-alistp (set::union x y))
           (and (string-string-alistp (set::sfix x))
                (string-string-alistp (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-mergesort

    (defthm string-string-alistp-of-mergesort
      (iff (string-string-alistp (set::mergesort x))
           (string-string-alistp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-delete

    (defthm string-string-alistp-of-delete
      (implies (string-string-alistp x)
               (string-string-alistp (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-insert

    (defthm string-string-alistp-of-insert
      (iff (string-string-alistp (set::insert a x))
           (and (string-string-alistp (set::sfix x))
                (and (consp a)
                     (stringp (car a))
                     (stringp (cdr a)))))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-sfix

    (defthm string-string-alistp-of-sfix
      (iff (string-string-alistp (set::sfix x))
           (or (string-string-alistp x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-list-fix

    (defthm string-string-alistp-of-list-fix
      (implies (string-string-alistp x)
               (string-string-alistp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-string-string-alistp-compound-recognizer

    (defthm true-listp-when-string-string-alistp-compound-recognizer
      (implies (string-string-alistp x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: string-string-alistp-when-not-consp

    (defthm string-string-alistp-when-not-consp
      (implies (not (consp x))
               (equal (string-string-alistp x)
                      (not x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-cdr-when-string-string-alistp

    (defthm string-string-alistp-of-cdr-when-string-string-alistp
      (implies (string-string-alistp (double-rewrite x))
               (string-string-alistp (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-cons

    (defthm string-string-alistp-of-cons
      (equal (string-string-alistp (cons a x))
             (and (and (consp a)
                       (stringp (car a))
                       (stringp (cdr a)))
                  (string-string-alistp x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-make-fal

    (defthm string-string-alistp-of-make-fal
      (implies (and (string-string-alistp x)
                    (string-string-alistp y))
               (string-string-alistp (make-fal x y)))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-cdr-when-member-equal-of-string-string-alistp

    (defthm stringp-of-cdr-when-member-equal-of-string-string-alistp
      (and (implies (and (string-string-alistp x)
                         (member-equal a x))
                    (stringp (cdr a)))
           (implies (and (member-equal a x)
                         (string-string-alistp x))
                    (stringp (cdr a))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-car-when-member-equal-of-string-string-alistp

    (defthm stringp-of-car-when-member-equal-of-string-string-alistp
      (and (implies (and (string-string-alistp x)
                         (member-equal a x))
                    (stringp (car a)))
           (implies (and (member-equal a x)
                         (string-string-alistp x))
                    (stringp (car a))))
      :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-string-string-alistp

    (defthm consp-when-member-equal-of-string-string-alistp
      (implies (and (string-string-alistp x)
                    (member-equal a x))
               (consp a))
      :rule-classes
      ((:rewrite :backchain-limit-lst (0 0))
       (:rewrite :backchain-limit-lst (0 0)
                 :corollary (implies (if (member-equal a x)
                                         (string-string-alistp x)
                                       'nil)
                                     (consp a)))))

    Theorem: string-string-alistp-of-remove-assoc

    (defthm string-string-alistp-of-remove-assoc
      (implies (string-string-alistp x)
               (string-string-alistp (remove-assoc-equal name x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-put-assoc

    (defthm string-string-alistp-of-put-assoc
      (implies (and (string-string-alistp x))
               (iff (string-string-alistp (put-assoc-equal name val x))
                    (and (stringp name) (stringp val))))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-fast-alist-clean

    (defthm string-string-alistp-of-fast-alist-clean
      (implies (string-string-alistp x)
               (string-string-alistp (fast-alist-clean x)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-hons-shrink-alist

    (defthm string-string-alistp-of-hons-shrink-alist
      (implies (and (string-string-alistp x)
                    (string-string-alistp y))
               (string-string-alistp (hons-shrink-alist x y)))
      :rule-classes ((:rewrite)))

    Theorem: string-string-alistp-of-hons-acons

    (defthm string-string-alistp-of-hons-acons
      (equal (string-string-alistp (hons-acons a n x))
             (and (stringp a)
                  (stringp n)
                  (string-string-alistp x)))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-cdr-of-hons-assoc-equal-when-string-string-alistp

    (defthm stringp-of-cdr-of-hons-assoc-equal-when-string-string-alistp
      (implies (string-string-alistp x)
               (iff (stringp (cdr (hons-assoc-equal k x)))
                    (hons-assoc-equal k x)))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-string-string-alistp-rewrite

    (defthm alistp-when-string-string-alistp-rewrite
      (implies (string-string-alistp x)
               (alistp x))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-string-string-alistp

    (defthm alistp-when-string-string-alistp
      (implies (string-string-alistp x)
               (alistp x))
      :rule-classes :tau-system)

    Theorem: stringp-of-cdar-when-string-string-alistp

    (defthm stringp-of-cdar-when-string-string-alistp
      (implies (string-string-alistp x)
               (iff (stringp (cdar x)) (consp x)))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-caar-when-string-string-alistp

    (defthm stringp-of-caar-when-string-string-alistp
      (implies (string-string-alistp x)
               (iff (stringp (caar x)) (consp x)))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-cdr-of-assoc-equal-when-string-string-alistp

    (defthm stringp-of-cdr-of-assoc-equal-when-string-string-alistp
      (implies (string-string-alistp alist)
               (iff (stringp (cdr (assoc-equal key alist)))
                    (assoc-equal key alist))))