Fixing function for fraig-output-map-entry structures.
(fraig-output-map-entry-fix x) → new-x
Function:
(defun fraig-output-map-entry-fix$inline (x) (declare (xargs :guard (fraig-output-map-entry-p x))) (let ((__function__ 'fraig-output-map-entry-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((type (fraig-output-type-fix (cdr (std::da-nth 0 x)))) (count (nfix (cdr (std::da-nth 1 x))))) (list (cons 'type type) (cons 'count count))) :exec x)))
Theorem:
(defthm fraig-output-map-entry-p-of-fraig-output-map-entry-fix (b* ((new-x (fraig-output-map-entry-fix$inline x))) (fraig-output-map-entry-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm fraig-output-map-entry-fix-when-fraig-output-map-entry-p (implies (fraig-output-map-entry-p x) (equal (fraig-output-map-entry-fix x) x)))
Function:
(defun fraig-output-map-entry-equiv$inline (x acl2::y) (declare (xargs :guard (and (fraig-output-map-entry-p x) (fraig-output-map-entry-p acl2::y)))) (equal (fraig-output-map-entry-fix x) (fraig-output-map-entry-fix acl2::y)))
Theorem:
(defthm fraig-output-map-entry-equiv-is-an-equivalence (and (booleanp (fraig-output-map-entry-equiv x y)) (fraig-output-map-entry-equiv x x) (implies (fraig-output-map-entry-equiv x y) (fraig-output-map-entry-equiv y x)) (implies (and (fraig-output-map-entry-equiv x y) (fraig-output-map-entry-equiv y z)) (fraig-output-map-entry-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fraig-output-map-entry-equiv-implies-equal-fraig-output-map-entry-fix-1 (implies (fraig-output-map-entry-equiv x x-equiv) (equal (fraig-output-map-entry-fix x) (fraig-output-map-entry-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fraig-output-map-entry-fix-under-fraig-output-map-entry-equiv (fraig-output-map-entry-equiv (fraig-output-map-entry-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fraig-output-map-entry-fix-1-forward-to-fraig-output-map-entry-equiv (implies (equal (fraig-output-map-entry-fix x) acl2::y) (fraig-output-map-entry-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fraig-output-map-entry-fix-2-forward-to-fraig-output-map-entry-equiv (implies (equal x (fraig-output-map-entry-fix acl2::y)) (fraig-output-map-entry-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fraig-output-map-entry-equiv-of-fraig-output-map-entry-fix-1-forward (implies (fraig-output-map-entry-equiv (fraig-output-map-entry-fix x) acl2::y) (fraig-output-map-entry-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fraig-output-map-entry-equiv-of-fraig-output-map-entry-fix-2-forward (implies (fraig-output-map-entry-equiv x (fraig-output-map-entry-fix acl2::y)) (fraig-output-map-entry-equiv x acl2::y)) :rule-classes :forward-chaining)