• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
            • Node-fix
            • Node-p
            • Node-equiv
            • Co-node->fanin
            • Gate-node->fanin1
            • Gate-node->fanin0
            • Stype
            • Nxst-node
            • Node->type
            • Node->regp
            • Xor-node
              • Xor-node->fanin1
              • Xor-node->fanin0
              • And-node
              • Po-node
              • Proper-node-p
              • Reg-node
              • Pi-node
              • Const-node
            • Network
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Xor-node

    Xor-node->fanin0

    Get the fanin0 field from a xor-node.

    Signature
    (xor-node->fanin0 x) → fanin0
    Arguments
    x — Guard (node-p x).
    Returns
    fanin0 — Type (litp fanin0).

    This is an ordinary field accessor created by fty::defprod.

    Definitions and Theorems

    Function: xor-node->fanin0$inline

    (defun xor-node->fanin0$inline (x)
      (declare (xargs :guard (node-p x)))
      (declare (xargs :guard (equal (stype x) :xor)))
      (let ((__function__ 'xor-node->fanin0))
        (declare (ignorable __function__))
        (mbe :logic
             (b* ((x (and (equal (stype x) :xor) x)))
               (lit-fix (cadr x)))
             :exec (cadr x))))

    Theorem: litp-of-xor-node->fanin0

    (defthm litp-of-xor-node->fanin0
      (b* ((fanin0 (xor-node->fanin0$inline x)))
        (litp fanin0))
      :rule-classes :type-prescription)

    Theorem: xor-node->fanin0$inline-of-node-fix-x

    (defthm xor-node->fanin0$inline-of-node-fix-x
      (equal (xor-node->fanin0$inline (node-fix x))
             (xor-node->fanin0$inline x)))

    Theorem: xor-node->fanin0$inline-node-equiv-congruence-on-x

    (defthm xor-node->fanin0$inline-node-equiv-congruence-on-x
      (implies (node-equiv x x-equiv)
               (equal (xor-node->fanin0$inline x)
                      (xor-node->fanin0$inline x-equiv)))
      :rule-classes :congruence)

    Theorem: xor-node->fanin0-when-wrong-kind

    (defthm xor-node->fanin0-when-wrong-kind
      (implies (not (equal (stype x) :xor))
               (equal (xor-node->fanin0 x)
                      (lit-fix nil))))