• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Riscv
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Poseidon
      • Where-do-i-place-my-book
      • Axe
      • Bigmems
      • Builtins
      • Execloader
      • Aleo
        • Aleobft
          • Aleobft-static
          • Aleobft-dynamic
          • Aleobft-arxiv
            • Correctness
              • Unequivocal-dags-def-and-init
              • Same-committees-def-and-implied
              • Dag-omni-paths
              • Signer-records
              • Unequivocal-dags-next
              • Quorum-intersection
              • Dag-previous-quorum-def-and-init-and-next
                • Dag-previous-quorum-p-of-next
                • Validator-dag-previous-quorum-p
                • Dag-previous-quorum-p
                  • Dag-previous-quorum-p-when-init
                • Unequivocal-signed-certificates
                • Signed-previous-quorum
                • Nonforking-anchors-def-and-init-and-next
                • Successor-predecessor-intersection
                • Fault-tolerance
                • Last-anchor-voters-def-and-init-and-next
                • Signer-quorum
                • Committed-redundant-def-and-init-and-next
                • Nonforking-blockchains-def-and-init
                • Blockchain-redundant-def-and-init-and-next
                • No-self-endorsed
                • Last-anchor-present
                • Anchors-extension
                • Nonforking-blockchains-next
                • Backward-closure
                • Last-blockchain-round
                • Dag-certificate-next
                • Omni-paths-def-and-implied
                • Ordered-even-blocks
                • Simultaneous-induction
                • System-certificates
                • Last-anchor-def-and-init
                • Last-anchor-next
                • Dag-previous-quorum
                • Signed-certificates
                • Committed-anchor-sequences
                • Omni-paths
                • Last-anchor-voters
                • Unequivocal-dags
                • Nonforking-blockchains
                • Nonforking-anchors
                • Committed-redundant
                • Same-committees
                • Blockchain-redundant
              • Definition
            • Aleobft-stake
            • Aleobft-proposals
            • Library-extensions
          • Leo
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Proof-automation
      • Community
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Dag-previous-quorum-def-and-init-and-next

    Dag-previous-quorum-p

    Definition of the invariant: for each certificate in the DAG of each validator, either the certificate's round is 1 and the certificate has no references to previous certificates, or the certificate's round is not 1 and the references to previous certificates form a non-zero quorum in the committee of the preceding round of the certificate.

    This invariant, along with backward closure and non-equivocation, guarantees that dag-predecessor-quorum-p holds, as we prove here. The key lemma is predecessor-quorum-when-validator-dag-previous-quorum-p proved in validator-dag-previous-quorum-p. Here we just need to enable some rules to establish the hypotheses of that lemma.

    Definitions and Theorems

    Theorem: dag-previous-quorum-p-necc

    (defthm dag-previous-quorum-p-necc
     (implies
      (dag-previous-quorum-p systate)
      (implies
       (and
          (in val (correct-addresses systate))
          (in cert
              (validator-state->dag (get-validator-state val systate))))
       (validator-dag-previous-quorum-p
            cert
            (get-validator-state val systate)))))

    Theorem: booleanp-of-dag-previous-quorum-p

    (defthm booleanp-of-dag-previous-quorum-p
      (b* ((yes/no (dag-previous-quorum-p systate)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: dag-previous-quorum-p-of-system-state-fix-systate

    (defthm dag-previous-quorum-p-of-system-state-fix-systate
      (equal (dag-previous-quorum-p (system-state-fix systate))
             (dag-previous-quorum-p systate)))

    Theorem: dag-previous-quorum-p-system-state-equiv-congruence-on-systate

    (defthm
         dag-previous-quorum-p-system-state-equiv-congruence-on-systate
      (implies (system-state-equiv systate systate-equiv)
               (equal (dag-previous-quorum-p systate)
                      (dag-previous-quorum-p systate-equiv)))
      :rule-classes :congruence)

    Theorem: dag-predecessor-quorum-p-when-dag-previous-quorum-p

    (defthm dag-predecessor-quorum-p-when-dag-previous-quorum-p
      (implies
           (and (dag-previous-quorum-p systate)
                (backward-closed-p systate)
                (in val (correct-addresses systate)))
           (dag-predecessor-quorum-p
                (validator-state->dag (get-validator-state val systate))
                (validator-state->blockchain
                     (get-validator-state val systate)))))