(event-list-fix x) is a usual ACL2::fty list fixing function.
(event-list-fix x) → fty::newx
In the logic, we apply event-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.
Function:
(defun event-list-fix$inline (x) (declare (xargs :guard (event-listp x))) (let ((__function__ 'event-list-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) nil (cons (event-fix (car x)) (event-list-fix (cdr x)))) :exec x)))
Theorem:
(defthm event-listp-of-event-list-fix (b* ((fty::newx (event-list-fix$inline x))) (event-listp fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm event-list-fix-when-event-listp (implies (event-listp x) (equal (event-list-fix x) x)))
Function:
(defun event-list-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (event-listp acl2::x) (event-listp acl2::y)))) (equal (event-list-fix acl2::x) (event-list-fix acl2::y)))
Theorem:
(defthm event-list-equiv-is-an-equivalence (and (booleanp (event-list-equiv x y)) (event-list-equiv x x) (implies (event-list-equiv x y) (event-list-equiv y x)) (implies (and (event-list-equiv x y) (event-list-equiv y z)) (event-list-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm event-list-equiv-implies-equal-event-list-fix-1 (implies (event-list-equiv acl2::x x-equiv) (equal (event-list-fix acl2::x) (event-list-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm event-list-fix-under-event-list-equiv (event-list-equiv (event-list-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-event-list-fix-1-forward-to-event-list-equiv (implies (equal (event-list-fix acl2::x) acl2::y) (event-list-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-event-list-fix-2-forward-to-event-list-equiv (implies (equal acl2::x (event-list-fix acl2::y)) (event-list-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm event-list-equiv-of-event-list-fix-1-forward (implies (event-list-equiv (event-list-fix acl2::x) acl2::y) (event-list-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm event-list-equiv-of-event-list-fix-2-forward (implies (event-list-equiv acl2::x (event-list-fix acl2::y)) (event-list-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm car-of-event-list-fix-x-under-event-equiv (event-equiv (car (event-list-fix acl2::x)) (car acl2::x)))
Theorem:
(defthm car-event-list-equiv-congruence-on-x-under-event-equiv (implies (event-list-equiv acl2::x x-equiv) (event-equiv (car acl2::x) (car x-equiv))) :rule-classes :congruence)
Theorem:
(defthm cdr-of-event-list-fix-x-under-event-list-equiv (event-list-equiv (cdr (event-list-fix acl2::x)) (cdr acl2::x)))
Theorem:
(defthm cdr-event-list-equiv-congruence-on-x-under-event-list-equiv (implies (event-list-equiv acl2::x x-equiv) (event-list-equiv (cdr acl2::x) (cdr x-equiv))) :rule-classes :congruence)
Theorem:
(defthm cons-of-event-fix-x-under-event-list-equiv (event-list-equiv (cons (event-fix acl2::x) acl2::y) (cons acl2::x acl2::y)))
Theorem:
(defthm cons-event-equiv-congruence-on-x-under-event-list-equiv (implies (event-equiv acl2::x x-equiv) (event-list-equiv (cons acl2::x acl2::y) (cons x-equiv acl2::y))) :rule-classes :congruence)
Theorem:
(defthm cons-of-event-list-fix-y-under-event-list-equiv (event-list-equiv (cons acl2::x (event-list-fix acl2::y)) (cons acl2::x acl2::y)))
Theorem:
(defthm cons-event-list-equiv-congruence-on-y-under-event-list-equiv (implies (event-list-equiv acl2::y y-equiv) (event-list-equiv (cons acl2::x acl2::y) (cons acl2::x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-event-list-fix (equal (consp (event-list-fix acl2::x)) (consp acl2::x)))
Theorem:
(defthm event-list-fix-under-iff (iff (event-list-fix acl2::x) (consp acl2::x)))
Theorem:
(defthm event-list-fix-of-cons (equal (event-list-fix (cons a x)) (cons (event-fix a) (event-list-fix x))))
Theorem:
(defthm len-of-event-list-fix (equal (len (event-list-fix acl2::x)) (len acl2::x)))
Theorem:
(defthm event-list-fix-of-append (equal (event-list-fix (append std::a std::b)) (append (event-list-fix std::a) (event-list-fix std::b))))
Theorem:
(defthm event-list-fix-of-repeat (equal (event-list-fix (repeat acl2::n acl2::x)) (repeat acl2::n (event-fix acl2::x))))
Theorem:
(defthm list-equiv-refines-event-list-equiv (implies (list-equiv acl2::x acl2::y) (event-list-equiv acl2::x acl2::y)) :rule-classes :refinement)
Theorem:
(defthm nth-of-event-list-fix (equal (nth acl2::n (event-list-fix acl2::x)) (if (< (nfix acl2::n) (len acl2::x)) (event-fix (nth acl2::n acl2::x)) nil)))
Theorem:
(defthm event-list-equiv-implies-event-list-equiv-append-1 (implies (event-list-equiv acl2::x fty::x-equiv) (event-list-equiv (append acl2::x acl2::y) (append fty::x-equiv acl2::y))) :rule-classes (:congruence))
Theorem:
(defthm event-list-equiv-implies-event-list-equiv-append-2 (implies (event-list-equiv acl2::y fty::y-equiv) (event-list-equiv (append acl2::x acl2::y) (append acl2::x fty::y-equiv))) :rule-classes (:congruence))
Theorem:
(defthm event-list-equiv-implies-event-list-equiv-nthcdr-2 (implies (event-list-equiv acl2::l l-equiv) (event-list-equiv (nthcdr acl2::n acl2::l) (nthcdr acl2::n l-equiv))) :rule-classes (:congruence))
Theorem:
(defthm event-list-equiv-implies-event-list-equiv-take-2 (implies (event-list-equiv acl2::l l-equiv) (event-list-equiv (take acl2::n acl2::l) (take acl2::n l-equiv))) :rule-classes (:congruence))