Basic equivalence relation for import structures.
Function:
(defun import-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (importp acl2::x) (importp acl2::y)))) (equal (import-fix acl2::x) (import-fix acl2::y)))
Theorem:
(defthm import-equiv-is-an-equivalence (and (booleanp (import-equiv x y)) (import-equiv x x) (implies (import-equiv x y) (import-equiv y x)) (implies (and (import-equiv x y) (import-equiv y z)) (import-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm import-equiv-implies-equal-import-fix-1 (implies (import-equiv acl2::x x-equiv) (equal (import-fix acl2::x) (import-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm import-fix-under-import-equiv (import-equiv (import-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-import-fix-1-forward-to-import-equiv (implies (equal (import-fix acl2::x) acl2::y) (import-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-import-fix-2-forward-to-import-equiv (implies (equal acl2::x (import-fix acl2::y)) (import-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm import-equiv-of-import-fix-1-forward (implies (import-equiv (import-fix acl2::x) acl2::y) (import-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm import-equiv-of-import-fix-2-forward (implies (import-equiv acl2::x (import-fix acl2::y)) (import-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)