Lex a
(lex-binary-op input) → (mv ret-tree ret-input)
Function:
(defun lex-binary-op (input) (declare (xargs :guard (nat-listp input))) (let ((__function__ 'lex-binary-op)) (declare (ignorable __function__)) (b* (((mv outer-tree outer-input-after-tree) (b* (((mv tree input-after-tree) (abnf::parse-schars "add.w" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "add" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "sub.w" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "sub" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "mul.w" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "mul" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "div.w" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "div" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "rem.w" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "rem" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "mod" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "pow.w" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "pow" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "shl.w" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "shl" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "shr.w" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "shr" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "and" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "or" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "xor" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "nand" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "nor" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "gte" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "gt" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "lte" input)) ((unless (reserrp tree)) (mv tree input-after-tree)) ((mv tree input-after-tree) (abnf::parse-schars "lt" input)) ((unless (reserrp tree)) (mv tree input-after-tree))) (mv (reserrf-push tree) (nat-list-fix input)))) ((when (reserrp outer-tree)) (mv outer-tree (nat-list-fix input)))) (mv (abnf-tree-wrap outer-tree "binary-op") outer-input-after-tree))))
Theorem:
(defthm tree-resultp-of-lex-binary-op.ret-tree (b* (((mv ?ret-tree ?ret-input) (lex-binary-op input))) (abnf::tree-resultp ret-tree)) :rule-classes :rewrite)
Theorem:
(defthm nat-listp-of-lex-binary-op.ret-input (b* (((mv ?ret-tree ?ret-input) (lex-binary-op input))) (nat-listp ret-input)) :rule-classes :rewrite)
Theorem:
(defthm len-of-lex-binary-op-<= (b* (((mv ?ret-tree ?ret-input) (lex-binary-op input))) (<= (len ret-input) (len input))) :rule-classes :linear)
Theorem:
(defthm len-of-lex-binary-op-< (b* (((mv ?ret-tree ?ret-input) (lex-binary-op input))) (implies (not (reserrp ret-tree)) (< (len ret-input) (len input)))) :rule-classes :linear)
Theorem:
(defthm lex-binary-op-of-nat-list-fix-input (equal (lex-binary-op (nat-list-fix input)) (lex-binary-op input)))
Theorem:
(defthm lex-binary-op-nat-list-equiv-congruence-on-input (implies (acl2::nat-list-equiv input input-equiv) (equal (lex-binary-op input) (lex-binary-op input-equiv))) :rule-classes :congruence)