Fixing function for mapping structures.
Function:
(defun mapping-fix$inline (x) (declare (xargs :guard (mappingp x))) (let ((__function__ 'mapping-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((name (identifier-fix (cdr (std::da-nth 0 (cdr x))))) (key-name (identifier-fix (cdr (std::da-nth 1 (cdr x))))) (key-type (finalize-type-fix (cdr (std::da-nth 2 (cdr x))))) (value-name (identifier-fix (cdr (std::da-nth 3 (cdr x))))) (value-type (finalize-type-fix (cdr (std::da-nth 4 (cdr x)))))) (cons :mapping (list (cons 'name name) (cons 'key-name key-name) (cons 'key-type key-type) (cons 'value-name value-name) (cons 'value-type value-type)))) :exec x)))
Theorem:
(defthm mappingp-of-mapping-fix (b* ((new-x (mapping-fix$inline x))) (mappingp new-x)) :rule-classes :rewrite)
Theorem:
(defthm mapping-fix-when-mappingp (implies (mappingp x) (equal (mapping-fix x) x)))
Function:
(defun mapping-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (mappingp acl2::x) (mappingp acl2::y)))) (equal (mapping-fix acl2::x) (mapping-fix acl2::y)))
Theorem:
(defthm mapping-equiv-is-an-equivalence (and (booleanp (mapping-equiv x y)) (mapping-equiv x x) (implies (mapping-equiv x y) (mapping-equiv y x)) (implies (and (mapping-equiv x y) (mapping-equiv y z)) (mapping-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm mapping-equiv-implies-equal-mapping-fix-1 (implies (mapping-equiv acl2::x x-equiv) (equal (mapping-fix acl2::x) (mapping-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm mapping-fix-under-mapping-equiv (mapping-equiv (mapping-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-mapping-fix-1-forward-to-mapping-equiv (implies (equal (mapping-fix acl2::x) acl2::y) (mapping-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-mapping-fix-2-forward-to-mapping-equiv (implies (equal acl2::x (mapping-fix acl2::y)) (mapping-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm mapping-equiv-of-mapping-fix-1-forward (implies (mapping-equiv (mapping-fix acl2::x) acl2::y) (mapping-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm mapping-equiv-of-mapping-fix-2-forward (implies (mapping-equiv acl2::x (mapping-fix acl2::y)) (mapping-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)