Fixing function for ternary-op structures.
(ternary-op-fix x) → new-x
Function:
(defun ternary-op-fix$inline (x) (declare (xargs :guard (ternary-opp x))) (let ((__function__ 'ternary-op-fix)) (declare (ignorable __function__)) (mbe :logic (case (ternary-op-kind x) (:ternary (cons :ternary (list)))) :exec x)))
Theorem:
(defthm ternary-opp-of-ternary-op-fix (b* ((new-x (ternary-op-fix$inline x))) (ternary-opp new-x)) :rule-classes :rewrite)
Theorem:
(defthm ternary-op-fix-when-ternary-opp (implies (ternary-opp x) (equal (ternary-op-fix x) x)))
Function:
(defun ternary-op-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (ternary-opp acl2::x) (ternary-opp acl2::y)))) (equal (ternary-op-fix acl2::x) (ternary-op-fix acl2::y)))
Theorem:
(defthm ternary-op-equiv-is-an-equivalence (and (booleanp (ternary-op-equiv x y)) (ternary-op-equiv x x) (implies (ternary-op-equiv x y) (ternary-op-equiv y x)) (implies (and (ternary-op-equiv x y) (ternary-op-equiv y z)) (ternary-op-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ternary-op-equiv-implies-equal-ternary-op-fix-1 (implies (ternary-op-equiv acl2::x x-equiv) (equal (ternary-op-fix acl2::x) (ternary-op-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ternary-op-fix-under-ternary-op-equiv (ternary-op-equiv (ternary-op-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ternary-op-fix-1-forward-to-ternary-op-equiv (implies (equal (ternary-op-fix acl2::x) acl2::y) (ternary-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ternary-op-fix-2-forward-to-ternary-op-equiv (implies (equal acl2::x (ternary-op-fix acl2::y)) (ternary-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ternary-op-equiv-of-ternary-op-fix-1-forward (implies (ternary-op-equiv (ternary-op-fix acl2::x) acl2::y) (ternary-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ternary-op-equiv-of-ternary-op-fix-2-forward (implies (ternary-op-equiv acl2::x (ternary-op-fix acl2::y)) (ternary-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ternary-op-kind$inline-of-ternary-op-fix-x (equal (ternary-op-kind$inline (ternary-op-fix x)) (ternary-op-kind$inline x)))
Theorem:
(defthm ternary-op-kind$inline-ternary-op-equiv-congruence-on-x (implies (ternary-op-equiv x x-equiv) (equal (ternary-op-kind$inline x) (ternary-op-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-ternary-op-fix (consp (ternary-op-fix x)) :rule-classes :type-prescription)