• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • ACL2
    • Macro-libraries
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
      • Bit-vectors
        • Sparseint
          • Sparseint-impl
            • Sparseint$-binary-bitop-width
            • Sparseint$-plus-width
            • Sparseint$-binary-bitop-offset
            • Sparseint$-binary-bitop-int-width
            • Sparseint$-plus-int-width
            • Sum-with-cin
            • Sparseint$-plus-offset
            • Sparseint$-binary-bitop-int
              • Sparseint$-finalize-concat
              • Sparseint$-plus-int
              • Sparseint$-binary-bittest-width
              • Sparseint$-binary-bittest-int-width
              • Sparseint$-trailing-0-count-width
              • Sparseint$-height
              • Int-to-sparseint$-rec
              • Carry-out
              • Sparseint$-compare-width
              • Sparseint$-binary-bittest-offset
              • Sparseint$-equal-width
              • Sparseint$-binary-bittest-int
              • Sparseint$-compare-int-width
              • Sparseint$-bitcount-width
              • Sparseint$-unary-bittest-width
              • Sparseint$-rightshift-rec
              • Sparseint$-equal-int-width
              • Sparseint$-trailing-0-count-rec
              • Sparseint$-unary-bitop
              • Sparseint$-concatenate
              • Sparseint$-length-width-rec
              • Sparseint$-sign-ext
              • Sparseint$-binary-bitop
              • Binary-bitop
              • Sparseint$-compare-offset
              • Sparseint$-unary-bittest-offset
              • Sparseint$-equal-offset
              • Sparseint$-truncate
              • Sparseint$-mergeable-leaves-p
              • Carry-out-bit
              • Sparseint$-truncate-height
              • Sparseint$-compare-int
              • Sparseint$-binary-bittest
              • Sparseint$-equal-int
              • Sparseint$-rightshift
              • Sparseint$-leaves-mergeable-p
              • Sparseint$-plus
              • Unary-bitop
              • Sparseint$-bitcount-rec
              • Within-1
              • Sparseint$
              • Binary-bitop-cofactor2
              • Binary-bitop-cofactor1
              • Sparseint$-compare
              • Sparseint$-unary-bittest
              • Sparseint$-height-correct-exec
              • Sparseint$-equal
              • Sparseint$-bitnot
              • Sparseint$-unary-minus
              • Sparseint$-bit
              • Int-to-sparseint$
              • Binary-bittest
              • Sparseint$-length-rec
              • Sparseint$-val
              • Binary-bitop-swap
              • Compare
              • Sparseint$-real-height
              • Sparseint$-height-correctp
              • Sparseint$-length
            • Sparseint-p
            • Sparseint-binary-bittest
            • Sparseint-concatenate
            • Sparseint-binary-bitop
            • Sparseint-bitite
            • Sparseint-fix
            • Sparseint$-binary-minus
            • Sparseint-trailing-1-count-from
            • Sparseint-trailing-0-count-from
            • Sparseint-equal
            • Sparseint-test-bitorc2
            • Sparseint-test-bitorc1
            • Sparseint-test-bitnand
            • Sparseint-test-bitandc2
            • Sparseint-test-bitandc1
            • Sparseint-test-bitand
            • Sparseint-rightshift
            • Sparseint-bitcount-from
            • Sparseint-test-bitxor
            • Sparseint-test-bitor
            • Sparseint-test-bitnor
            • Sparseint-test-biteqv
            • Sparseint-compare
            • Sparseint-binary-minus
            • Sparseint-sign-ext
            • Sparseint-plus
            • Sparseint-bitandc2
            • Sparseint-bitandc1
            • Sparseint-bitand
            • Sparseint$-leaf-bitlimit
            • Sparseint-bitxor
            • Sparseint-bitorc2
            • Sparseint-bitorc1
            • Sparseint-bitor
            • Sparseint-bitnor
            • Sparseint-bitnand
            • Sparseint-biteqv
            • Sparseint-ash
            • Sparseint-<
            • Sparseint-bit
            • Sparseint-trailing-1-count
            • Sparseint-trailing-0-count
            • Sparseint-unary-minus
            • Sparseint-length
            • Sparseint-bitnot
            • Sparseint-bitcount
            • Int-to-sparseint
            • Sparseint-val
          • Bitops
          • Bv
          • Ihs
          • Rtl
        • Algebra
      • Testing-utilities
    • Sparseint-impl

    Sparseint$-binary-bitop-int

    Signature
    (sparseint$-binary-bitop-int op offset x x.height y) 
      → 
    (mv binary-res height)
    Arguments
    op — Guard (integerp op).
    offset — Guard (natp offset).
    x — Guard (sparseint$-p x).
    x.height — Guard (natp x.height).
    y — Guard (integerp y).
    Returns
    binary-res — Type (sparseint$-p binary-res).
    height — Type (equal height (sparseint$-height binary-res)).

    Definitions and Theorems

    Function: sparseint$-binary-bitop-int

    (defun sparseint$-binary-bitop-int (op offset x x.height y)
     (declare (type (unsigned-byte 4) op))
     (declare (xargs :guard (and (integerp op)
                                 (natp offset)
                                 (sparseint$-p x)
                                 (natp x.height)
                                 (integerp y))))
     (declare
          (xargs :guard (and (sparseint$-height-correctp x)
                             (equal x.height (sparseint$-height x)))))
     (let ((__function__ 'sparseint$-binary-bitop-int))
      (declare (ignorable __function__))
      (b*
       ((y (lifix y))
        (offset (lnfix offset))
        (x.height (mbe :logic (sparseint$-height x)
                       :exec x.height))
        ((when (or (eql y 0) (eql y -1)))
         (b* ((cofactor (binary-bitop-cofactor2 op (- y))))
          (mbe
             :logic
             (b* (((mv shift shift-height)
                   (sparseint$-rightshift-rec offset x x.height)))
               (sparseint$-unary-bitop cofactor shift shift-height))
             :exec
             (b* (((when (eql cofactor 0))
                   (mv (sparseint$-leaf 0) 0))
                  ((when (eql cofactor 3))
                   (mv (sparseint$-leaf -1) 0))
                  ((mv shift shift-height)
                   (sparseint$-rightshift-rec offset x x.height)))
               (sparseint$-unary-bitop cofactor shift shift-height))))))
       (sparseint$-case
            x :leaf
            (mv (sparseint$-leaf (binary-bitop op (logtail offset x.val)
                                               y))
                0)
            :concat
            (b* ((x.msbs.height
                      (mbe :logic (sparseint$-height x.msbs)
                           :exec (- x.height (if x.lsbs-taller 2 1))))
                 ((when (<= x.width offset))
                  (sparseint$-binary-bitop-int op (- offset x.width)
                                               x.msbs x.msbs.height y))
                 (width1 (- x.width offset))
                 (x.lsbs.height
                      (mbe :logic (sparseint$-height x.lsbs)
                           :exec (- x.height (if x.msbs-taller 2 1))))
                 ((mv lsbs-and lsbs-and-height)
                  (sparseint$-binary-bitop-int-width
                       op width1 offset x.lsbs
                       x.lsbs.height (bignum-logext width1 y)))
                 (x.msbs.height
                      (mbe :logic (sparseint$-height x.msbs)
                           :exec (- x.height (if x.lsbs-taller 2 1))))
                 ((mv msbs-and msbs-and-height)
                  (sparseint$-binary-bitop-int
                       op 0 x.msbs
                       x.msbs.height (logtail width1 y))))
              (sparseint$-concatenate-rebalance
                   width1 lsbs-and lsbs-and-height
                   msbs-and msbs-and-height))))))

    Theorem: sparseint$-p-of-sparseint$-binary-bitop-int.binary-res

    (defthm sparseint$-p-of-sparseint$-binary-bitop-int.binary-res
      (b* (((mv ?binary-res ?height)
            (sparseint$-binary-bitop-int op offset x x.height y)))
        (sparseint$-p binary-res))
      :rule-classes :rewrite)

    Theorem: return-type-of-sparseint$-binary-bitop-int.height

    (defthm return-type-of-sparseint$-binary-bitop-int.height
      (b* (((mv ?binary-res ?height)
            (sparseint$-binary-bitop-int op offset x x.height y)))
        (equal height (sparseint$-height binary-res)))
      :rule-classes :rewrite)

    Theorem: sparseint$-height-correctp-of-sparseint$-binary-bitop-int

    (defthm sparseint$-height-correctp-of-sparseint$-binary-bitop-int
      (b* (((mv ?binary-res ?height)
            (sparseint$-binary-bitop-int op offset x x.height y)))
        (implies (sparseint$-height-correctp x)
                 (sparseint$-height-correctp binary-res))))

    Theorem: sparseint$-val-of-sparseint$-binary-bitop-int

    (defthm sparseint$-val-of-sparseint$-binary-bitop-int
      (b* (((mv ?binary-res ?height)
            (sparseint$-binary-bitop-int op offset x x.height y)))
        (equal (sparseint$-val binary-res)
               (binary-bitop op (logtail offset (sparseint$-val x))
                             y))))

    Theorem: sparseint$-binary-bitop-int-of-ifix-op

    (defthm sparseint$-binary-bitop-int-of-ifix-op
      (equal (sparseint$-binary-bitop-int (ifix op)
                                          offset x x.height y)
             (sparseint$-binary-bitop-int op offset x x.height y)))

    Theorem: sparseint$-binary-bitop-int-int-equiv-congruence-on-op

    (defthm sparseint$-binary-bitop-int-int-equiv-congruence-on-op
     (implies
       (int-equiv op op-equiv)
       (equal
            (sparseint$-binary-bitop-int op offset x x.height y)
            (sparseint$-binary-bitop-int op-equiv offset x x.height y)))
     :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-int-of-nfix-offset

    (defthm sparseint$-binary-bitop-int-of-nfix-offset
      (equal (sparseint$-binary-bitop-int op (nfix offset)
                                          x x.height y)
             (sparseint$-binary-bitop-int op offset x x.height y)))

    Theorem: sparseint$-binary-bitop-int-nat-equiv-congruence-on-offset

    (defthm sparseint$-binary-bitop-int-nat-equiv-congruence-on-offset
     (implies
       (nat-equiv offset offset-equiv)
       (equal
            (sparseint$-binary-bitop-int op offset x x.height y)
            (sparseint$-binary-bitop-int op offset-equiv x x.height y)))
     :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-int-of-sparseint$-fix-x

    (defthm sparseint$-binary-bitop-int-of-sparseint$-fix-x
      (equal (sparseint$-binary-bitop-int op offset (sparseint$-fix x)
                                          x.height y)
             (sparseint$-binary-bitop-int op offset x x.height y)))

    Theorem: sparseint$-binary-bitop-int-sparseint$-equiv-congruence-on-x

    (defthm sparseint$-binary-bitop-int-sparseint$-equiv-congruence-on-x
     (implies
       (sparseint$-equiv x x-equiv)
       (equal
            (sparseint$-binary-bitop-int op offset x x.height y)
            (sparseint$-binary-bitop-int op offset x-equiv x.height y)))
     :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-int-of-nfix-x.height

    (defthm sparseint$-binary-bitop-int-of-nfix-x.height
      (equal (sparseint$-binary-bitop-int op offset x (nfix x.height)
                                          y)
             (sparseint$-binary-bitop-int op offset x x.height y)))

    Theorem: sparseint$-binary-bitop-int-nat-equiv-congruence-on-x.height

    (defthm sparseint$-binary-bitop-int-nat-equiv-congruence-on-x.height
     (implies
       (nat-equiv x.height x.height-equiv)
       (equal
            (sparseint$-binary-bitop-int op offset x x.height y)
            (sparseint$-binary-bitop-int op offset x x.height-equiv y)))
     :rule-classes :congruence)

    Theorem: sparseint$-binary-bitop-int-of-ifix-y

    (defthm sparseint$-binary-bitop-int-of-ifix-y
      (equal (sparseint$-binary-bitop-int op offset x x.height (ifix y))
             (sparseint$-binary-bitop-int op offset x x.height y)))

    Theorem: sparseint$-binary-bitop-int-int-equiv-congruence-on-y

    (defthm sparseint$-binary-bitop-int-int-equiv-congruence-on-y
     (implies
       (int-equiv y y-equiv)
       (equal
            (sparseint$-binary-bitop-int op offset x x.height y)
            (sparseint$-binary-bitop-int op offset x x.height y-equiv)))
     :rule-classes :congruence)